Modern Perl

Modern Perl

chromatic

Modern Perl

Copyright ©2010 chromatic

Editor: Shane Warden
Logo design:Devin Muldoon
Cover design:Allison Randal and chromatic

ISBN-10: 0-9779201-5-1
ISBN-13:978-0-9779201-5-0

Published by Onyx Neon Press, . The Onyx Neon logo is a trademark of Onyx Neon, Inc.

This book was typeset on Ubuntu GNU/Linux using Perl 5, , and LaTeX. Many thanks to the free
software contributors who make these and other projectsifples

Please report any errors at
First Edition October 2010

Please share this book!

We give this book away in the hope that it is useful. We enogeiggou to share this unmodi ed PDF with others,
for free. If you do nd this book useful, please see

to help us produce more such books in the future.

Thanks for reading!

http://www.onyxneon.com/
http://github.com/chromatic/modern_perl_book/

Contents

Preface
Running Modern Perl
Perl 5 and Perl 6
Credits

The Perl Philosophy
Perldoc

Expressivity

Context

Implicit Ideas

Perl and Its Community
Community Sites

Development Sites

EVENtS . . . e e e e e e e e e e e e e

10
10
10

Modern Perl

Operators

Operator CharacteristiCs e e e

Operator Types . . .

Functions
Declaring Functions .
Invoking Functions .
Function Parameters .
Functions and Names
Reporting Errors . . .

Advanced Functions .

PACES . o v v e e e e

Pitfalls and Misfeatures e e e e e e e

Scope

Anonymous FUNCLIONS o o e e

Closures

State versus Closures

State versus Psuedo-State e e e

Attributes
AUTOLOAD

Regular Expressions and
Literals
The qgr// Operator and
Quantifiers.
Greediness
Regex Anchors . . .
Metacharacters . . .
Character Classes .

Capturing

Matching
Regex Combinations e e e

Grouping and Alternation L e e

Other EScape SEqUENCES e e e

Assertions
Regex Modifiers . . .

Smart Matching . . .

Objects

59
59
60

63
63
63
64
66
67
68
71
72
75
79
82
83
83
85

89
89
89
90
91
92
92
93
93
95
96
96
97
98

Preface

Reflection e 113
Advanced OO Perl e e 115
Style and Ef cacy 117
Writing Maintainable Perl. L e e 117
Writing Idiomatic Perl e e e 118
Writing Effective Perl e 118
EXCEPtioNS e e 119
Pragmas e e 121
Managing Real Programs 123
TeStiNg o e 123
Handling Warnings 126
Files . . . e e 129
ModUIES 134
Distributions L e 137
The UNIVERSAL Package e e e e e e s e e e e e 139
Code Generation e e e 141
Overloading e e e 145
TaiNt . . e e 146
Perl Beyond Syntax 148
IdIOMS . . . e 148
Global Variables e 153
What to Avoid 156
Barewords e e e 156
IndireCt ODJECES e e e 158
Prototypes e e e 159
Method-Function Equivalence e e 162
TiE . o e 163
What's Missing 166
Missing Defaults e e 166

Preface

Perl turns 23 years old later this year. The language hasfgomea simple tool for system administration somewhere betw
shell scripting and C programming (Perl 1) to a powerful,eyahpurpose language steeped in a rich heritage (Perldbaan
consistent, coherent, rethinking of programming in geliatanded to last for another 25 years (Perl 6).

Even so, most Perl 5 programs in the world take far too littheamtage of the language. Yoanwrite Perl 5 programs as if
they were Perl 4 programs (or Perl 3 or 2 or 1), but programemrito take advantage of everything amazing the worldwide
Perl 5 community has invented, polished, and discoveredtzwger, faster, more powerful, and easier to maintain thain
alternatives.

Modern Perlis a loose description of how experienced and effective Pprogrammers work. They use language idioms. They
take advantage of the CPAN. They're recognizably Perlist they show good taste and craftsmanship and a full undelisig
of Perl.

You can learn this too.

Running Modern Perl

The Modern::Perl module is available from the CPAN. Instajburself or replace it with:
use 5.010;

use strict;

use warnings;

With these lines in every example program, Perl will warn ydwubious constructs and typos and will enable
new features of Perl 5.10 through the pragma (see Pragmas, page 121). For now, assume theseréines a
always present. You will understand them soon.

Unless otherwise mentioned, code snippets always assunasic skeleton of a program:

#!lusr/bin/perl
use Modern::Perl;

example code here

Other code snippets use testing functions such as, ,and (see Testing, page 123). That skeleton program is:

#!/usr/bin/perl

use Modern::Perl;
use Test::More;

example code here

d"cme_testing();

Preface

The examples in this book work best with Perl 5.10.0 or newdesally at least Perl 5.10.1. Many examples will work on olde
versions of Perl 5 with modest changes, but you will have naifreulty with anything older than 5.10.0. This book also
describes (but does naquirethe use of) features found in Perl 5.12.

You can often install a new version of Perl yourself. Windasers, download Strawberry Perl from
. Users of other operating systems with Perl 5 already ilestdand a C compiler and the other development tools), start
by installing the CPAN module 1

allows you to install and to manage multiple versions of BerBy default, it installs them to your own home
directory. Not only can you have multiple versions of PemStalled without affecting the system Perl but you can aistsil
any module you like into these directories without askingry®ystem administrator for specific permission.

Perl 5 and Perl 6

Should you learn Perl 5 or Perl 6? They share philosophy anthgyand libraries and community; they fill different niche
Learn Perl 5 if:

 You have existing Perl 5 code to maintain
* You need to take advantage of CPAN modules
« Your deployment strategy requires rigorous stability

Learn Perl 6 if:

* You're comfortable managing frequent upgrades

 You can afford to experiment with new syntax and features

* You need new features only available in Perl 6

¢ You can contribute to its development (whether patcheg reports, documentation, sponsorship, or other resources

In general, Perl 5 development is conservative with regarthé¢ core language. For good or for ill, change occurs slowly
Perl 6 is more experimental, as it considers finding the pessible design more important than keeping old code wgrkin
Fortunately, you can learn and use both languages (andriteypperate to an ever-improving degree).

This book discusses Perl 5. To learn more about Perl 6, see , try Rakudo (),
and refer to the booklsing Perl § also published by Onyx Neon Press.

Credits

This book would not have been possible in its current formhaut questions, comments, suggestions, advice, wisdoth, an
encouragement from many, many people. In particular, thieoaand editor would like to thank:

John SJ Anderson, Peter Aronoff, Lee Aylward, Alex BalhatcEvar Arnfjord Bjarmason, Matthias Bloch, John Bokma,
Vasily Chekalkin, Dmitry Chestnykh, E. Choroba, Paulo ©dst, Felipe, Shlomi Fish, Jeremiah Foster, Mark FowlehnJo
Gabriele, Andrew Grangaard, Bruce Gray, Ask Bjgrn Hansém, Fleaney, Robert Hicks, Michael Hind, Mark Hindess,
Yary Hluchan, Mike Huffman, Curtis Jewell, Mohammed Arakdamaal, James E Keenan, Yuval Kogman, Jan Krynicky,
Jeff Lavallee, Moritz Lenz, Jean-Baptiste Mazon, Josh Mahd, Gareth McCaughan, John McNamara, Shawn M Moore,
Alex Muntada, Carl Masak, Chris Niswander, Nelo Onyiah, £awens, ww from PerlMonks, Jess Robinson, Dave Rolsky,
Gabrielle Roth, Andrew Savige, Lorne Schachter, Dan Sétetxander Scott-Johns, Phillip Smith, Christopher E.Fstlark

A. Stratman, Bryan Summersett, Audrey Tang, Scott ThomBen, Tilly, Sam Vilain, Larry Wall, Colin Wetherbee, Frank
Wiegand, Doug Wilson, Sawyer X, David Yingling, Marko Zagoz harleypig, hbm, and sunnavy.

Any errors are the fault of the author's own stubbornness.

1see for installation instructions.

The Perl Philosophy

Perl is a language for getting things done. It's flexiblergiving, and malleable. In the hands of a capable programiner
can accomplish almost any task, from one-liner calculatiand automations to multi-programmer, multi-year prajestd
everything in between.

Perl is powerful, and modern Perl—Perl which takes advarétgee best knowledge, deepest experience, and reusatieddi
of the global Perl community—is maintainable, fast, and gasyse. Perhaps most importantly, it can help you do what you
need to do with little frustration and no ceremony.

Perl is a pragmatic language. You, the programmer, are irgeh&ather than manipulating your mind and your problenti$ to
how the language designer thinks you should write progr&ed,allows you to solve your problems as you see fit.

Perl is a language which can grow with you. You can write uggfograms with the knowledge that you can learn in an hour
of reading this book. Yet if you take the time to understarel fthilosophies behind the syntax, semantics, and desigreof t
language, you can be far more productive.

First, you need to know how to learn more.

Perldoc

One of Perl's most useful and least appreciated featurégis t utility. This program is part of every complete Perl 5 in-
stallatior?. It displays the documentation of every Perl module insthtin the system—whether a core module or one installed
from the Comprehensive Perl Archive Network (CPAN)—as weltteousands of pages of Perl's copious core documentation.

If you prefer an online version, hosts recent versions of the Perl documentation.
displays the documentation of every module on the CPAN. Wirgdusers, both
ActivePerl and Strawberry Perl provide a link in your Stagmua to the documentation.

The default behavior of is to display the documentation for a named module or a sSpesgftion of the core docu-
mentation:

$ perldoc List:Util
$ perldoc perltoc
$ perldoc Moose::Manual

The first example extracts documentation written for the module and displays it in a form appropriate for your
screen. Community standards for CPAN modules (see The CpaAbk 10) suggest that additional libraries use the same
documentation format and form as core modules, so therefstinction between reading the documentation for a coraty
such as or one installed from the CPAN. The standard documentatamptate includes a description of the
module, demonstrates sample uses, and then contains ledietgdlanation of the module and its interface. While the @mho

of documentation varies by author, the form of the docuntamtas remarkably consistent.

The second example displays a pure documentation filejsrcéise the table of contents of the core documentatiot. itld@k
file describes each individual piece of the core documantabrowse it for a good understanding of Perl's breadth.

2You may have to install an additional package on a free GNWik ilistribution or another Unix-like system; on Debian andiblo this is

1

Modern Perl

The third example resembles the second; is part of the Moose CPAN distribution (see Moose, page 103).
also purely documentation; it contains no code.

Similarly, will display the table of contents for Frequently Asked Qigss about Perl 5
Skimming these questions is invaluable.

The utility has many more abilities (see). Two of the most useful are the and the flags. The

flag takes a keyword or keywords and searches only the P&l Bisplaying all results. Thus returns
three questionddow do | sort an array by (anything)How do | sort a hash (optionally by value instead of ke@fdHow
can | always keep my hash sorted?

The flag displays the core documentation for a builtin Perl tiom explains the behavior of the
operator. If you don't know the name of the function you warsg to see a list of functions.
and document Perl's symbolic operators and syntactic contstyuc

explains the meanings of Perl's warning messages.

Perl 5's documentation system BOD, or Plain Old Documentation describes how POD works. The
utility will display the POD in any Perl module you create anstall for your project, and other POD tools such as
, which validates the form of your POD, and , which displays local POD as HTML through a

minimal web server, will handle valid POD correctly.

has other uses. With the command-line flag, it displays thgathto the documentation file rather than the contents
of the documentatioh With the flag, it displays the entireontentsof the module, code and all, without processing any POD
instructions.

Expressivity

Before Larry Wall created Perl, he studied linguistics anchkn languages. His experiences continue to influenc&s Bedign.
There are many ways to write a Perl program depending on yajegi's style, the available time to create the prograra, th
expected maintenance burden, or even your own persona sérexpression. You may write in a straightforward, top-to-
bottom style. You may write many small and independent fionst You may model your problem with classes and objects.
You may eschew or embrace advanced features.

Perl hackers have a slogan for thiISMTOWTDI| pronounced “Tim Toady”, or “There's more than one way to b i

Where this expressivity can provide a large palette with Whitaster craftsman can create amazing and powerful edifices
unwise conglomerations of various techniques can impedetaiaability and comprehensibility. You can write goocdecor
you can make a mess. The choice is y8urs

Where other languages might suggest that one enforced wayit® any operation is the right solution, Perl allows you
to optimize for your most important criteria. Within the h@aof your own problems, you can choose from several good
approaches—but be mindful of readability and future maivathility.

As a novice to Perl, you may find certain constructs dif ctdtunderstand. The greater Perl community has discoveréd an
promoted several idioms (see Idioms, page 148) which offegsitgpower. Don't expect to understand them immediatelyné&o
of Perl's features interact in subtle ways.

Another design goal of Perl is to surprise experienced Jpeolgrammers very little. For example, adding two scalagether
with a numeric operator () is obviously a numeric operation; the operator must trett bcalars

3Be aware that a module may have a sepagaudfile in addition to its.pmfile.

4...but be kind to other people, if you must make a mess.

The Perl Philosophy

Learning Perl is like learning a second or third spoken laggu You'll learn a few words, then string together
some sentences, and eventually will be able to have smalblsiconversations. Mastery comes with practice, Qoth
reading and writing. You don't have to understand all of tle¢ads of this chapter immediately to be productive

with Perl. Keep these principles in mind as you read the retsti® book.

as numeric values to produce a numeric result. No matter thkatontents of and , Perl will coerce
them to numeric values (see Numeric Coercion, page 47) wittemuiring the user or programmer to specify this coneersi
manually. You've expressed your intent to treat them as rersby choosing a numeric operator (see Numeric Opera@age, p
60), so Perl happily handles the rest.

In general, Perl programmers can expect Perl to do what yannihis is the notion oDWIM—do what | meanYou may
also see this mentioned as thenciple of least astonishmen®&iven a cursory understanding of Perl (especially contee
Context, page 3), it should be possible to read a single uh&rRerl expression and understand its intent.

If you're new to Perl, you will develop this skill over timehe flip side of Perl's expressivity is that Perl novices caitawseful

programs before they learn all of Perl's powerful featuiidse Perl community often refers to thislaaby Perl Though it may
sound dismissive, please don't take offense; everyone a/ec@ once. Take the opportunity to learn from more expegen
programmers and ask for explanations of idioms and cortstyozl don't yet understand.

A Perl novice might multiply a list of numbers by three by wrg:
my @tripled;

my $count = @numbers;

for (my $i = 0; $i < $count; $i++)

S$tripled[$i] = $numbers[$i] * 3

A Perl adept might write:

my @tripled;
for my $num (@numbers)

push @tripled, $num * 3;

An experienced Perl hacker might write:

my @tripled = map { $_ * 3 } @numbers;

Experience writing Perl will help you to focus on what you wemdo rather than how to do it.

Perl is a language intended to grow with your understandingragramming. It won't punish you for writing simple pro-
grams. It allows you to refine and expand programs for glagitpressivity, reuse, and maintainability. Take advgataf this
philosophy. It's more important to accomplish your task Miehn to write a conceptually pure and beautiful program.

The rest of this book demonstrates how to use Perl to younaaga.

Context

Spoken languages have a notiorcohtextwhere the correct usage or meaning of a word or phrase depantssurroundings.
You may understand this in a spoken language, where the riopipate pluralization of “Please give me one hamburgérs!”

5The pluralization of the noun differs from the amount.

Modern Perl

sounds wrong or the incorrect gender of “la g&toiakes native speakers chuckle. Consider also the pronauri ty the noun
“sheep” which can be singular or plural depending on the ned®a of the sentence.

Context in Perl is similar; the language understands egfieas of the amount of data to provide as well as what kindaté d
to provide. Perl will happily attempt to provide exactly vilyau ask for—and you ask by choosing one operator over another

One type of context in Perl means that certain operators tdferent behavior if you want zero, one, or many results. It
possible that a specific construct in Perl will do somethiliféerent if you say “Fetch me zero results; | don't care atay”
than if you say “Fetch me one result” or “Fetch me many results

Likewise, certain contexts make it clear that you expectraenc value, a string value, or a value that's either trueatsd.

Context can be tricky if you try to write or read Perl code assees of single expressions which stand apart from their
environments. You may find yourself slapping your forehedigr a long debugging session when you discover that your
assumptions about context were incorrect. However, if ppoabgnizant of contexts, they can make your code cleareme mo
concise, and more flexible.

Void, Scalar, and List Context

One of the aspects of context govehtsv manyitems you expect. This @mount contextCompare this context to subject-verb
number agreement in English. Even if you haven't learneddheal description of the rule, you probably understandeirer

in the sentence “Perl are a fun language”. The rule in PeHasthe number of items you request determines how many you
get.

Suppose you have a function (see Declaring Functions, pageatied which sorts all of your chores in order
of their priority. The means by which you call this functioetdrmines what it will produce. You may have no time to do ekor

in which case calling the function is an attempt to look irtdosis. You may have enough time to do one task, or you could
have a burst of energy and a free weekend and the desire tondochsof the list as possible.

If you call the function on its own and never use its returnuealyou've called the function imoid context

find_chores();

Assigning the function's return value to a single elememtieates the function iacalar context

my $single_result = find_chores();

Assigning the results of calling the function to an arraye(éerays, page 36) or a list, or using it in a list, evaluatesftinction
in list context

my @all_results = find_chores();
my ($single_element) = find_chores();
process_list_of_results(find_chores());

The second line of the previous example may look confusimg;parentheses there give a hint to the compiler that althoug
there's only a scalar, this assignment should occur in bsitext. It's semantically equivalent to assigning thetfitem in

the list to a scalar and assigning the rest of the list to a teary array, and then throwing away the array—except that no
assignment to the array actually occurs:

my ($single_element, @rest) = find_chores();

Evaluating a function or expression—except for assignmentisti context can produce confusion. Lists propagate tistext
to the expressions they contain. Both calls to occur in list context:

6The article is feminine, but the noun is masculine.

The Perl Philosophy

process_list_of_results(find_chores());

my %results =

(
cheap_operation => $cheap_operation_results,
expensive_operation => find_chores(), # OOPS!

The latter example often surprises novice programmers wpecat scalar context for the call. occurs
is in list context, because its results are assigned to a hkish assignments take a list of key/value pairs, whichesaaay
the evaluation of any expressions in that list to occur ind@text.

Use the operator to impose scalar context:

my %results =

(
cheap_operation => $cheap_operation_results,
expensive_operation => scalar find_chores(),

Why does context matter? The function can examine its cattmgfext and decide how much work it needs to do before
returning its results. In void context, can do nothing. In scalar context, it can find only the mogpantant
task. In list context, it has to sort and return the entire lis

Numeric, String, and Boolean Context

Another type of context determines how Perl understandeeepdf data—nohow manypieces of data you want, but what
the data means. You've probably already noticed that Piebgble about figuring out if you have a number or a stringlan
converting between the two as you want them. Maikie contexhelps to explain how it does so. In exchange for not having
to declare (or at least track) explicitly whiatpe of data a variable contains or a function produces, Pertofpecific type
contexts that tell the compiler how to treat a given valuérdyan operation.

Suppose you want to compare the contents of two strings. Tlo@erator tells you if the strings contain the same infororati

say "Catastrophic crypto fail"" if $alice eq $bob;

You may have had a baf ing experience where yawwthat the strings are different, but they still compare thaesa

my $alice = alice;
say “"Catastrophic crypto fail!" if $alice == Bob; # OOPS

The operator treats its operands as strings by enforstrigg contexton them. The operator imposesumeric context
The example code fails because the value of both strings whated as numbers is(see Numeric Coercion, page 47).

Boolean contexbccurs when you use a value in a conditional statement. Ipréagous examples, the statement evaluated
the results of the and operators in boolean context.

Perl will do its best to coerce values to the proper type (sser€ion, page 47), depending on the operators you use. Bésur
use the proper operator for the type of context you want.

In rare circumstances, you may need to force an explicitesdniyhere no appropriately typed operator exists. To force a
numeric context, add zero to a variable. To force a stringecdnconcatenate a variable with the empty string. To farce
boolean context, double the negation operator:

my $numeric_x = 0 + $x; # forces numeric context
my $stringy_x = . $x; # forces string context
my $boolean_x = I$x; # forces boolean context

In general, type contexts are less dif cult to understand see than the amount contexts. Once you understand thaaxfsty
and know which operators provide which contexts (see Opefgpes, page 60), you'll rarely make mistakes with them.

5

Modern Perl

Implicit Ideas

Like many spoken languages, Perl provides linguistic slust Context is one such feature: both the compiler and grano-
mer reading the code can understand the expected numbesulfsrer the type of an operation from existing information
without requiring additional information to disambiguate

Other linguistic features include default variables—eta#y pronouns.

The Default Scalar Variable

The default scalar variablgalso called theéopic variablg, , is the best example of a linguistic shortcut in Perl. It'ssiho
notable in itsabsencemany of Perl's builtin operations work on the contents ofin the absence of an explicit variable. You
can stilluse as the variable, but it's often unnecessary.

For example, the operator removes any trailing newline sequence from thengsiring:
my $uncle = "Bob\n";
say "$uncle";

chomp $uncle;
say "$uncle";

Without an explicit variable, removes the trailing newline sequence from These two lines of code are equivalent:

chomp $_;
chomp;

has the same function in Perl as the proniun English. Read the first line as “ it”and the secondas“ ". Perl
understands what you mean when you don't explain what to ghé&rl will always chomyit.

Similarly, the and builtins operate on in the absence of other arguments:
print; # prints $_ to the currently selected filehandle

say; # prints $_ to the currently selected filehandle
with a trailing newline

Perl's regular expression facilities (see Regular Expoessand Matching, page 89) can also operate oto match, substitute,
and transliterate:

$_ = My name is Paquito;

say if /My name is/;
s/Paquito/Paquita/;

tr/A-Zla-z/;
say;

Many of Perl's scalar operators (including , . , ,and) work on the default scalar variable if you
do not provide an alternative.

Perl's looping directives (see Looping Directives, pagg&lgo set , suchas iterating over a list:

say "# $_" for 1 .. 10;

for (1 .. 10)
say "# $_";
}
..or

The Perl Philosophy

while (<STDIN>)
{

chomp;
say scalar reverse;

..or transforming a list:

my @squares = map { $_ * $_} 1 .. 10;
say for @squares;

..or filtering a list:

say Brunch time! if grep { /pancake mix/ } @pantry;

If you call functions within code that uses whether implicitly or explicitly, they may overwrite the e of . Similarly, if
you write a function which uses , you may clobber a caller function's use of. Perl 5.10 allows you to use to declare
as a lexical variable, which prevents this clobbering baraBe wise.

while (<STDIN>)
{
chomp;
BAD EXAMPLE
my $munged = calculate_value($_);
say "Original: $_";
say "Munged : $munged";

In this example, if or any other function it happened to call changed it would remain changed
throughout the loop. Adding a declaration prevents that behavior:

while (my $_ = <STDIN>)
{

Of course, using a named lexical can be just as clear:

while (my $line = <STDIN>)

Use as you would the word “it” in formal writing: sparingly, in sai and well-defined scopes.

The Default Array Variables

While Perl has a single implicit scalar variable, it has twalicit array variables. Perl passes arguments to functioren
array named . Array manipulation operations (see Arrays, page 36) anfuahctions affect this array by default. Thus, these
two snippets of code are equivalent:

sub foo

{
my $arg = shift;

}
sub foo_explicit

{
my $arg = shift @_;

Modern Perl

Justas corresponds to the pronout; corresponds to the pronodineyor them Unlike , Perl automatically localizes
for you when you call other functions. The array operators and operate on with no other operands provided.

Outside of all functions, the default array variable contains the command-line arguments to the program. The aamay
operators which use implicitly within functions use implicitly outside of functions. You cannot use when you
mean

has one special case. If you read from the null filehandlePerl will treat every element in as thenameof a file
to open for reading. (If is empty, Perl will read from standard input.) This implicit behavior is useful for writing
short programs, such as this command-line filter whichns&its input:

while (<>)

chomp;
say scalar reverse;

Why ? imposes list context on its operands. passes its context on to its operands, treating
them as a list in list context and a concatenated string ilascantext. This sounds confusing, because it is. Perl
5 arguably should have had different operators for thederdifit operations.

If you run it with a list of files:

$ perl reverse_lines.pl encrypted/ *.txt

... the result will be one long stream of output. Without aryuanents, you can provide your own standard input by piping i
from another program or typing directly.

Perl and Its Community

One of Larry's main goals for Perl 5 was to encourage Perlldgveent and evolution outside the core distribution. Pdrad
several forks, because there was no easy way to connect ietatenal database, for example. Larry wanted peopledater
and maintain their own extensions without fragmenting ol thousands of incompatible pidgins.

You can add technical mechanisms for extensions, but you aisis consider community aspects as well. Extensions and
enhancements that no one shares are extensions and enbatg#mat everyone has to build and test and debug and nmaintai
themselves. Yet shared extensions and libraries are wegtlil you can't find them, or you can't enhance them, or yono'tdo
have permission to use them.

Fortunately, the Perl community exists. It's strong andlthgalt welcomes willing participants at all levels—and rjast
for people who produce and share code. Consider taking tayaof the knowledge and experience of countless other Perl
programmers, and sharing your abilities as well.

Community Sites

Perl's homepage at hosts documentation, source code, tutorials, mailing,letd several important
community projects. If youre new to Perl, the Perl begimerailing list is a friendly place to ask novice questions get
accurate and helpful answers. See

An important domain of note is , a central site for core development of Perl 5, Péslatd even Perl
1.

Perl.com publishes several articles and tutorials abottgPegramming every month. Its archives reach back into20ih
century. See

The CPAN's (see The CPAN, page 10) central location is , though experienced users spend more time
on . This central software distribution hub of reusable, freel Bode is an essential part of the
Perl community.

PerlMonks, at , is a venerable community site devoted to questions andeassand other discus-
sions about Perl programming. It celebrated its tenth amsary in December 2009, making it one of the longest- lgstiab
communities dedicated to any programming language.

Several community sites offer news and commentary. is a community site where many well known
developers post.

Other sites aggregate the musings of Perl hackers, ingudin , , and
. The latter is part of an initiative from the EnlightenedIR&nganization (
) to increase the amount and improve the quality of Perl ghbig on the web.

Perl Buzz () collects and republishes some of the most interesting aafliLPerl news on a regular
basis.

Development Sites

Best Practical Solutions () maintains an installation of their popular request tragksystem,
RT, for CPAN authors as well as Perl 5 and Perl 6 developmemryECPAN distribution has its own RT queue, linked from

"The main Perl 6 site is

Modern Perl

and available on . Perl 5 and Perl 6 have separate RT queues available on
The Perl 5 Porters (qu5p mailing list is the focal point of the development of Perk&eif. See
The Perl Foundation () hosts a wiki for all things Perl 5. See

Many Perl hackers use Github () to host their projects See especially Gitpan (
), which hosts Git repositories chronicling the complet&dry of every distribution on the CPAN.

Events

There are plenty of events in the physical world as well. Tked Pommunity holds a lot of conferences, workshops, and
seminars. In particular, the community-run YAPC—Yet AnatRerl Conference—is a successful, local, low-cost confegen
model held on multiple continents. See

The Perl Foundation wiki lists other events at

There are also hundreds of local Perl Mongers groups whittogether frequently for technical talks and social intéican.
See

IRC

When Perl mongers aren't at local meetings or conferencesodksiiops, many collaborate and chat online through IRC, a
textual group chat system from the early days of the InteiMany of the most popular and useful Perl projects have tveir
IRC channels, such @smooseor #catalyst

The main server for Perl community is . Other notable channels includéperl-help for general assis-
tance on Perl programming, a#gerl-qa devoted to testing and other quality issues. Be awarehkathianne#perlis not for
general help—instead, it's a general purpose room for dioegsvhatever its participants want to discuss

The CPAN

Perl 5 is a pragmatic language. It'll help you get your worlndoYet the ever-pragmatic Perl community has extended that
language and made their work available to the world. If youeteproblem to solve, chances are someone's already uploade
code to the CPAN for it.

The line between a modern language and its libraries is fuszg language only syntax? Is it the core libraries? Is it the
availability of external libraries and the ease at which gan use them within your own projects?

Regardless of how you answer those questions for any othguiae, modern Perl programming makes heavy use of the CPAN
(). The CPAN, or Comprehensive Perl Archive Network, is aroagding and mirroring system for
redistributable, reusable Perl code. It's one of—if tie—largest archives of libraries of code in the world.

CPAN mirrorsdistributions which tend to be collections of reusable Perl code. A sidgg&ibution can contain one or more
modules or self-contained libraries of Perl code. Each distributiives in its own namespace on the CPAN and contains its
own metadata. You can build, install, test, and update eathkdition. Distributions may depend on other distribas. For
this reason, installing distributions through a CPAN disroften simpler than doing so manually.

The CPAN itself is merely a mirroring service. Authors ugladistributions containing modules, and the CPAN sends them
to mirror sites, from which users and CPAN clients downloamhfigure, build, test, and install distributions. Yet tG@AN
has succeeded because of this simplicity, and because abtitgbutions of thousands of volunteers who've built orsth

8...including the sources of this book at

9...and it's not often friendly to people who ask basic prognsing questions.

10

Perl and Its Community

The CPANaddshundreds of registered contributors and thousands of atlmodules in hundreds of distributions
every month. Those numbers do not take into account updatesinting time in October 2010, search.cpan.org
reported 8465 uploaders, 86470 modules, and 21116 distrisu

distribution system to produce something greater. In @alar, community standards have evolved to identify theébattes and
characteristics of well-formed CPAN distributions. Thasgude:

Standards for installation to work with automated CPANafists.

Standards for metadata to describe what each distributndes and any dependencies of the distribution.

Standards for documentation and licensing to describe thieadistribution does and how you may use it.
Additional CPAN services provide comprehensive autométsting and reporting of every CPAN distribution for adhmee
to packaging and distribution guidelines and correctnésgbavior on various platforms and versions of Perl. EvePAR
distribution has its own ticket queue on for reporting bugs and working with authors. Distributions

also have historical versions available on the CPAN, ratiagnotations for the documentation, and other usefutrmdition.
All of this is available from

Modern Perl installations include two clients to connegtdearch, download, build, test, and install CPAN distiims,
CPAN.pm and CPANPLUS. They behave equivalently; their ssematter of taste. This book recommends the use of CPAN.pm
solely due to its ubiquity.

If you use a recent version of CPAN.pm (as of this writing 4AD® is the latest stable release), CPAN.pm configuratitarggely
decision-free. For any complete installation of Perl, yoayratart the client with:

$ cpan

To install a distribution:

$ cpan Modern::Perl

Eric Wilhelm's tutorial on configuring CPAN.p# includes a great troubleshooting section.

Even though the CPAN client is a core module for the Perl Sibigion, you may also have to install standard
development tools such as a utility and possibly a C compiler to install all of the digtitions you want,
Windows users, see Strawberry Perl () and Strawberry Perl Professional. Mac
OS X users need their developer tools installed. Unix ancdllké users, consult your local system administrator.

For your work setting up a CPAN client and an environment tibdband install distributions, you get access to libraries f
everything from database access to profiling tools to matfor almost every network device ever created to sourd an
graphics libraries and wrappers for shared libraries o ggstem.

Modern Perl without the CPAN is just another language. Modrerl with the CPAN is amazing.

CPAN Management Tools

Serious Perl developers often manage their own Perl lilpatlys or even full installations. Several projects help &kenthis
possible.

is a new CPAN client with goals of speed, simplicity, and zesofiguration. Installation is as easy as:

10

11

Modern Perl

$ curl -LO http://xrl.us/cpanm
$ chmod +x cpanm

is a system to manage and to switch between your own ingtal$adf multiple versions and configurations
of Perl. Installation is as easy as:

$ curl -LO http://xrl.us/perlbrew
$ chmod +x perlbrew

$./perlbrew install

$ perldoc App::perlbrew

The CPAN distribution allows you to install and to manage disitions in your own user directory, rather than
for the system as a whole. This is an effective way to mainE#AN distributions without affecting other users. Institin

is somewhat more involved than the previous two distrimgicSee for
more details.

All three distributions projects tend to assume a Unix-Bkwironment (such as a GNU/Linux distribution or even MacX)S
Windows users, see the Padre all-in-one download ().

12

The Perl Language

The Perl language has several smaller parts which combifeertoits syntax. Unlike spoken language, where nuance amsl to
of voice and intuition allow people to communicate desgitght misunderstandings and fuzzy concepts, computersancte
code require precision. You can write effective Perl coddetit knowing every detail of every language feature, but yust
understand how they work together to write Perl code well.

Names

Names(or identifierg are everywhere in Perl programs: variables, functionskgges, classes, and even filehandles have
names. These names all start with a letter or an underschey. May optionally include any combination of letters, num-
bers, and underscores. When the pragma (see Unicode and Strings, page 17) is in effect, yguusa any valid UTF-8
characters in identifiers. These are all valid Perl idésrist

my $name;
my @_private_names;
my %Names_to_Addresses;

sub anAwkwardName3;

with use utf8; enabled
package Ingy::Dot::Net;

These are invalid Perl identifiers:

my $invalid name;
my @3;
my %-~flags;

package a-lisp-style-name;

These rules only apply to names which appear in literal fannsaurce code; that is, if you've typed it directly like
or

Perl's dynamic nature makes it possible to refer to entititk names generated at runtime or provided as input to arpnog
These aresymbolic lookupsYou get more flexibility this way at the expense of some saf@ particular, invoking functions

or methods indirectly or looking up symbols in a namespatyleu bypass Perl's parser, which is the only part of Petl tha
enforces these grammatical rules. Be aware that doing sproauce confusing code; a hash (see Hashes, page 40) ad neste
data structure (see Nested Data Structures, page 55) ischézrer.

Variable Names and Sigils

Variable nameslways have a leading sigil which indicates the type of théatée's value Scalar variablegsee Scalars, page
35) have a leading dollar sign)characterArray variables(see Arrays, page 36) have a leading at signcharacterHash
variables(see Hashes, page 40) have a leading percent sjgiéaracter:

my $scalar;
my @array;
my %bhash;

In one sense, these sigils offer namespaces of the varjatiese it's possible (though often confusing) to have \a&a of
the same name but different types:

13

Modern Perl

my ($bad_name, @bad_name, %bad_name);

Perl won't get confused, but people reading the code might.

Perl 5 usewariant sigils where the sigil on a variable may change depending on whatlgowith it. For example, to access
an element of an array or a hash, the sigil changes to ther sigile():

my $hash_element = $hash{ $key };
my S$array_element = $array[$index]

$hash{ $key } = value;
$array[$index] = item;

In the latter two lines, using a scalar element of an aggesggtiivalue (the target of an assignment, on the left side of the
character) imposes scalar context (see Context, page Beovalue (the value assigned, on the right side of theharacter).

Similarly, accessing multiple elements of a hash or an array operation known aslicing—uses the at symbol | as the
leading sigil and imposes list context:

my @hash_elements = @hash{ @keys };
my @array_elements = @array] @indexes 1J;

my %bhash;
@hash{ @keys } = @values;

The most reliable way to determine the type of a variable—ascatray, or hash—is to look at the operations performed.on it
Scalars support all basic operations, such as string, nomaed boolean manipulations. Arrays support indexedsscteough
square brackets. Hashes support keyed access througtbrackets.

Package-Qualified Names

Occasionally you may need to refer to functions or varialiiesseparate namespace. Often you will need to refer to a blas
its fully-qualified name These names are collections of package names joined byedoolons (). That is,
refers to a logical collection of variables and functions.

While the standard naming rules apply to package names, leotian user-defined packages all start with uppercaterset
The Perl core reserves lowercase package names for commgsggee Pragmas, page 121), such as and
This is a policy enforced by community guidelines insteaéefl itself.

Namespaces do not nest in Perl 5. The relationship between and is only

a storage mechanism, with no further implications on thati@hships between parent and child or sibling packages.nwhe
Perl looks up a symbol in , it looks in the symbol table for a symbol representing
the namespace, then in there for the namespace, and so on. It's your responsibility to makelagigal
relationships between entities obvious when you chooseegamd organize your code.

Variables

A variablein Perl is a storage location for a value (see Values, pageybs)can work with values directly, but all but the most
trivial code works with variables. A variable is a level oflirection; it's easier to explain the Pythagorean theonemeims of
the variables, ,and than with the side lengths of every right triangle you cangima. This may seem basic and obvious, but
to write robust, well-designed, testable, and composatdlgraems, you must identify and exploit points of generigityerever
possible.

Variable Scopes

Variables also have visibility, depending on their scope (Scope, page 72). Most of the variables you will encourdee h
lexical scope (see Lexical Scope, page 72). Remember libatliemselves have their own lexical scopes, such that the
declaration on its own does not create a new scope:

14

The Perl Language

package Store::Toy;
our $discount = 0.10;
package Store::Music;

$Store::Toy::discount still visible as $discount
say "Our current discount is $discount!";

Variable Sigils

In Perl 5, the sigil of the variable in a declaration deteresithe type of the variable, whether scalar, array, or hasisigil of

the variable used to access the variable determines theofyguess to its value. Sigils on variables vary depending/loat

you do to the variable. For example, declare an array as . Access the first element—a single value—of the array with
. Access a list of values from the array with

Anonymous Variables

Perl 5 variables do nateednames; Perl manages variables just fine without caring talhow you refer to them. Variables
created without literal names in your source code (such as ,) areanonymouwariables. The
only way to access anonymous variables is by reference (@fegedRces, page 50).

Variables, Types, and Coercion

A variable in Perl 5 represents two things: the value (a dettdue, a list of pizza toppings, a group of guitar shops & t
phone numbers) and the container which stores that value5Be¢ype system deals withialue typesandcontainer typesA
variable's value type—whether a value is a string or a nunfoeexample—can change. You may store a string in a variable
in one line, append to that variable a number on the next, easbkign a reference to a function (see Function Referepags,
53) on the third. A variable'sontainer type-whether it's a scalar, an array, or a hash—cannot change.

Assigning to a variable may cause coercion (see Coercigg $d). The documented way to determine the number of entries
in an array is to evaluate that array in scalar context (se#eq page 3). Because a scalar variable can only everinanta
scalar, assigning an array to a scalar imposes scalar ¢amtétte operation and produces the number of elements it a

my $count = @items;

The relationship between variable types, sigils, and caigerital to a proper understanding of Perl.

Values
Effective Perl programs depend on the accurate repregantatd manipulation of values.

Computer programs contavariables containers which holgalues Values are the actual data the programs manipulate. While
it's easy to explain what that data might be—your aunt's nantkaddress, the distance between your of ce and a golf course
on the moon, or the weight of all cookies you've eaten in thet paar—the rules regarding the format of that data are often
strict. Writing an effective program often means understagdhe best (simplest, fastest, most compact, or easiest)oiv
representing that data.

While the structure of a program depends heavily on the meandizh you model your data with appropriate variables, ¢hes
variables would be meaningless if they couldn't accuratelytain the data itself—the values.

Strings

A string is a piece of textual or binary data with no particular fortimgt, no particular contents, and no other meaning to the
program. It could be your name. It could be the contents ofreage file read from your hard drive. It could be the Perl paogr
itself. A string has no meaning to the program until you giveéaning.

To represent a string in your program, you must surroundtt &pair of quoting characters. The most comrstrimg delimiters
are single and double quotes:

15

Modern Perl

my $name = Donner Odinson, Bringer of Despair
my $address = "Room 539, Bilskirnir, Valhalla"

Perl strings do not have a fixed length after you declare ther allows you to manipulate and modify strings|as
necessary and will handle all relevant memory managemembina

Characters in aingle-quoted stringepresent themselves literally, with two exceptions. Yayrembed a single quote inside a
single-quoted string by escaping the quote with a leadirjlbah:

my $reminder = Don \ t forget to escape the single quote!;

You must also escape any backslash at the end of the stringithescaping the closing delimiter and producing a synteore

my $exception = This string ends with a backslash, not a quot e \

Any other backslash appears literally in the string, buegitwo adjacent backslashes, the first will escape|the

second:
is(Modern \ Perl, Modern \\ Perl,
single quotes backslash escaping);

A double-quoted strindgnas more complex (and often, more useful) behavior. For plgnyou may encode non-printable
characters in the string:

my $tab ="\t
my $newline =" \n";
my S$carriage =" \r ";
my $formfeed =" \f
my $backspace = " \b "

This demonstrates a useful principle: the syntax used t@dea string may vary. You can represent a tab within a stwiitly
then escape or by typing a tab directly. As Perl runs, both strbedgve the same way, even though the specific representatio
of the string may differ in the source code.

A string declaration may cross logical newlines, such thasé two strings are equivalent:

my $escaped = "two\nlines";

my $literal = "two

lines";

is($escaped, $literal, \n and newline are equivalent);

You canenter these characters directly in the strings, but iteroftif cult to see the visual distinction between one tabreloter
and four (or two or eight) spaces.

You may alsainterpolatethe value of a scalar variable or the values of an array wighitouble-quoted string, such that the
contents of the variable become part of the string as if yauitten a concatenation operation directly:

my $factoid = "Did you know that $name lives at $address ?";
equivalent to

my $factoid = Did you know that . $name . lives at . $addres s . ?;

You may include a literal double-quote inside a double-gdaitring byescapingt (that is, preceding it with a leading back-
slash):

16

The Perl Language

my $quote = "\"Ouch,\", he cried. \"That hurt N\

If you find that hideously ugly, you may use an alternaqt®ting operator The operator indicates single quoting, while the
operator provides double quoting behavior. In each casenyay choose your own delimiter for the string. The character

immediately following the operator determines the begigrand end of the string. If the character is the opening cheraf

a balanced pair—such as opening and closing braces—thegldsimacter will be the final delimiter. Otherwise, the cwter

itself will be both the starting and ending delimiter.

my $quote = qg{ "Ouch", he said. "That hurt I" };
my $reminder = @g"Didnt need to escape the single quote! n;
my $complaint = qg{Its too early to be awake. ;

Even though you can declare a complex string with a seriesnbeelded escape characters, sometimes it's easier to@eclar
multi-line string on multiple lines. Thieeredocsyntax lets you assign one or more lines of a string with atkffit syntax:

my $blurb =<< END_BLURB;

He looked up. "Time is never on our side, my child. Do you see th e irony?

All they know is change. Change is the constant on which they a II can

agree. Whereas we, born out of time to remain perfect and perf ectly

self-aware, can only suffer change if we pursue it. It is agai nst our

nature. We rebel against that change. Shall we consider them greater

for it?"

END_BLURB

The syntax has three parts. The double angle-brackets inteottheécheredoc. The quotes determine whether
the heredoc obeys single-quoted or double-quoted behaitioregard to variable and escape character interpolaiibay're
optional; the default behavior is double-quoted interpota The itself is an arbitrary identifier which the Perl 5

parser uses as the ending delimiter.

Be careful; regardless of the indentation of the heredotadsion itself, the ending delimitenuststart at the beginning of the
line:

sub some_function {
my $ingredients =<< END_INGREDIENTS ;
Two eggs
One cup flour
Two ounces butter
One-quarter teaspoon salt
One cup milk
One drop vanilla
Season to taste
END_INGREDIENTS
}

If the identifier begins with whitespace, that same whigegpmust be present exactly in the ending delimiter.
Even if you do indent the identifier, Perl 5 willot remove equivalent whitespace from the start of each linbef
heredoc.

—

You may use a string in other contexts, such as boolean ormeirite contents will determine the resulting value (seeCmn,
page 47).
Unicode and Strings

Unicodeis a system for representing characters in the world's @nitanguages. While most English text uses a character set
of only 127 characters (which requires seven bits of stoeagkfits nicely into eight-bit bytes), it's naive to belietreat you
won't someday need an umlaut, for example.

Perl 5 strings can represent either of two related but diffedata types:

17

Modern Perl

Sequences of Unicode characters

The Unicode character set contains characters from thptsaf most languages, and various other symbols. Each
character has eodepointa unique number which identifies it in the Unicode chanasés.

Sequences of octets
Binary data is a sequence @ftets—8 bit numbers, each of which can represent a number betweed 25b.

Why octetand notbyte? Think of Unicode as characters without thinking of anyipatar size of the representatign
of those characters in memory. Assuming that one charattén bne byte will cause you no end of Unicode grief.

Unicode strings and binary strings look very similar. Theglehave a , and they support standard string operations
such as concatenation, splicing, and regular expressmrepsing. Any string which is not purely binary data is tektata,
and should be a sequence of Unicode characters.

However, because of how your operating system represetddadisk or from users or over the network—as sequences of
octets—Perl can't know if the data you read is an image file t&xa document or anything else. By default, Perl treats all
incoming data as sequences of octets. Any additional mganfithe string's contents are your responsibility.

Character Encodings

A Unicode string is a sequence of octets which representzeseg of characters. Bnicode encodingnaps octet sequences
to characters. Some encodings, such as UTF-8, can encaofelal characters in the Unicode character set. Otherssepte
a subset of Unicode characters. For example, ASCIl encddés pnglish text with no accented characters and Latinfl ca
represent text in most languages which use the Latin alphabe

If you always decode to and from the appropriate encodin@e&irtputs and outputs of your program, you will avoid many
problems.

Unicode in Your Filehandles

One source of Unicode input is filehandles (see Files, p2§&. If you tell Perl that a specific filehandle works withceed
text, Perl can convert the data to Unicode strings automiaticTo do this, add a 10 layer to the mode of the builtin. An
IO layer wraps around input or output and converts the data. In tiss,dhe layer decodes UTF-8 data:

use autodie;

open my $fh, <utf8, S$textfile;

my $unicode_string = <$fh>;

You may also modify an existing filehandle with , whether for input or output:

binmode $fh, :utf8;
my $unicode_string = <$fh>;

binmode STDOUT, :utf8;
say $unicode_string;

Without the mode, printing Unicode strings to a filehandle will resulta warning (), because
files contain octets, not Unicode characters.

Unicode in Your Data

The core module provides a function named to convert a scalar containing data in a known format to a
Unicode string. For example, if you have UTF-8 data:

my $string = decode(utf8, $data);

18

The Perl Language

The corresponding function converts from Perl's internal encoding to the degioutput encoding:

my $latinl = encode(is0-8859-1, $string);

Unicode in Your Programs

You may include Unicode characters in your programs in thrags. The easiest is to use the pragma (see Pragmas, page
121), which tells the Perl parser to interpret the rest ofsgbigrce code file with the UTF-8 encoding This allows you te us
Unicode characters in strings as well in identifiers:

use utf8;

sub £ to ¥ { ... }

my $pounds = £_to_¥(1000£);

To write this code, your text editor must understand UTF-8 and you sa the file with the appropriate encoding.
Within double-quoted strings you may also use the Unicodeessequence to represent character encodings. The ayntax
represents a single character; place the hex form of thecteais Unicode number within the curly brackets:

my $escaped_thorn = "\x{OOFE}";

Some Unicode characters have names. Though these are moosejghey can be clearer to read than Unicode numbers. You
must use the pragma to enable them. Use the escape to refer to them:

use charnames :full;
use Test:More tests => 1;

my $escaped_thorn = "\x{OOFE}";
my $named_thorn = "\N{LATIN SMALL LETTER THORN}";

is($escaped_thorn, $named_thorn, Thorn equivalence che ck);

You may use the andn forms within regular expressions as well as anywhere elsenyay legitimately use a string
or a character.

Implicit Conversion

Most Unicode problems in Perl arise from the fact that a gtdould be either a sequence of octets or a sequence of airaract
Perl allows you to combine these types through the use ofigihpbnversions. When these conversions are wrong, they're
rarely obviouslywrong.

When Perl concatenates a sequences of octets with a sequésheieade characters, it implicitly decodes the octet segee
using the Latin-1 encoding. The resulting string containgcdde characters. When you print Unicode characters, Reoldes
the string using UTF-8, because Latin-1 cannot represerettire set of Unicode characters.

This asymmetry can lead to Unicode strings encoded as UTF-@utput and decoded as Latin-1 when input.
Worse yet, when the text contains only English charactetis mo accents, the bug hides—because both encodings have the
same representation for every such character.

my $hello = "Hello, ";
my $greeting = $hello . $name;

If contains an English name suchAlgce you will never notice any problem, because the Latin-1 regméation is the
same as the UTF-8 representation.
If, on the other hand, contains a name likdosé can contain several possible values:

. contains four Unicode characters.

19

Modern Perl

. contains four Latin-1 octets representing four Unicoderatizrs.
. contains five UTF-8 octets representing four Unicode cttara.

The string literal has several possible scenarios:

e Itis an ASCII string literal and contains octets.

my $hello = "Hello, ";

e Itis a Latin-1 string literal with no explicit encoding alcdntains octets.

my $hello = "jHola, *;

The string literal contains octets.
¢ Itis a non-ASCII string literal with the or pragma in effect and contains Unicode characters.

use utfs;
my $hello = "Kuiraba, ;

If both and are Unicode strings, the concatenation will produce amdtimécode string.

If both strings are octet streams, Perl will concatenatenti@o a new octet string. If both values are octets of the same
encoding—both Latin-1, for example, the concatenationwdlik correctly. If the octets do not share an encoding, timeate-
nation append UTF-8 data to Latin-1 data, producing a semuehoctets which makes sensenigitherencoding. This could
happen if the user entered a name as UTF-8 data and the greetia a Latin-1 string literal, but the program decodedhagit

If only one of the values is a Unicode string, Perl will decdbe other as Latin-1 data. If this is not the correct encoding
the resulting Unicode characters will be wrong. For examipline user input were UTF-8 data and the string literal weere
Unicode string, the name will be incorrectly decoded inte fUnicode characters to fordosA©(sic) instead ofJosébecause
the UTF-8 data means something else when decoded as Latita1 d

See for a far more detailed explanation of Unicode, encodingsl, laow to manage incoming and
outgoing data in a Unicode world.

Numbers

Perl also supports numbers, both integers and floatingtpalues. You may write them in scientific notation as welbénary,
octal, and hexadecimal representations:

my S$integer = 42;

my $float = 0.007;

my $sci_float = 1.02e14;

my $hinary = 0b101010;
my $octal = 052;

my $hex = 0x20;

The emboldened characters are the numeric prefixes fonbioetal, and hex notation respectively. Be aware thateadihg
zero always indicates octal mode; this can occasionallgiygre unanticipated confusion.

Even though you can write floating-point values explicitty Perl 5 with perfect accuracy, Perl 5 stores them
internally in a binary format. Comparing floating-pointluas is sometimes imprecise in specific ways; consult
for more details.

You may not use commas to separate thousands in numeralditeecause the parser will interpret the commas as comma
operators. Yowanuse underscores within the number, however. The parsetreall them as invisible characters; your readers
may not. These are equivalent:

20

The Perl Language

my $billion = 1000000000;
my $billion = 1_000_000_000;
my $billion = 10_0_00_00_0_0_0;

Consider the most readable alternative, however.

Because of coercion (see Coercion, page 47), Perl progresmanely have to worry about converting text read from algsi
the program to numbers. Perl will treat anything which lobks a number as a number in numeric contexts. Even though it
almost always does so correctly, occasionally it's usefidrtow if something really does look like a number. The corelute

contains a function named which returns a true value if Perl will consider the given
argument numeric.

The module from the CPAN also provides several well-tested leggexpressions to identify valitypes
(whole number, integer, floating-point value) of numeraues.

Undef

Perl 5 has a value which represents an unassigned, undeéinddunknown value: . Declared but undefined scalar
variables contain

my $name = undef; # unnecessary assignment
my $rank; # also contains undef

evaluates to false in boolean context. Interpolating into a string—or evaluating it in a string context—produces
an warning:

my $undefined;

my $defined = $undefined and so forth;

...produces:

Use of uninitialized value $undefined in concatenation (.) or string...

The builtin returns a true value if its operand is a defined vdhrmything other than):

my $status = suffering from a cold;

say defined $status;
say defined undef;

The Empty List

When used on the right-hand side of an assignment, tlwonstruct represents an empty list. When evaluated in soataext,
this evaluates to . In list context, it is effectively an empty list.

When used on the left-hand side of an assignment, theonstruct imposes list context. To count the number of eteme
returned from an expression in list context without usingrafiorary variable, you use the idiom (see Idioms, page 148):

my $count = () = get_all_clown_hats();

Because of the right associativity (see Associativity,gp8§) of the assignment operator, Perl first evaluates ttenskeassign-
ment by calling in list context. This produces a list.

Assignment to the empty list throws away all of the valuesheflist, but that assignment takes place in scalar contéxthw
evaluates to the number of items on the right hand side ofdbiglament. As a result, contains the number of elements
in the list returned from

You don't have to understand all of the implications of thaade right now, but it does demonstrate how a few of Perl's
fundamental design features can combine to produce ititegeend useful behavior.

21

Modern Perl

Lists
A listis a comma-separated group of one or more expressions.

Lists may occur verbatim in source code as values:
my @first_fibs = (1, 1, 2, 3, 5, 8, 13, 21);
... as targets of assignments:

my ($package, $filename, $line) = caller();

...or as lists of expressions:

say name(), => , age();

You do not need parenthesescteatelists; the comma operator creates lists. Where presentatieaheses in these examples
group expressions to change firecedencef those expressions (see Precedence, page 59).

You may use the range operator to create lists of literalscionapact form:

my @chars
my @count

non
=
w
N
N

...and you may use the operator to split a literal string on whitespace to produtistaf strings:

my @stooges = qw(Larry Curly Moe Shemp Joey Kenny);

Perl will produce a warning if a contains a comma or the comment charactgrifecause not only are such
characters rarely included ina , their presence usually indicates an oversight.

Lists can (and often do) occur as the results of expressiutshese lists do not appear literally in source code.

Lists and arrays are not interchangeable in Perl. Lists @altgeg and arrays are containers. You may store a list in ag arnd
you may coerce an array to a list, but they are separateemntitor example, indexing into a list always occurs in ligitemt.
Indexing into an array can occur in scalar context (for alsiegement) or list context (for a slice):

enable say and other features (see preface)
use Modern::Perl;

you do not need to understand this
sub context

{

my $context = wantarray();

say defined $context
? $context
? list
: scalar
: void;
return 0;
}
my @list_slice = (1, 2, 3)[context()];
my @array_slice = @list_slice[context()];
my $array_index = $array_slice[context()];

say imposes list context
say context();

void context is obvious
context()

22

The Perl Language

Control Flow

Perl's basiccontrol flowis straightforward. Program execution starts at the beggn(the first line of the file executed) and
continues to the end:

say At start;
say In middle;
say At end;

Most programs need more complex control flow. Pectmitrol flow directiveschange the order of execution—what happens
next in the program—depending on the values of arbitraripglex expressions.

Branching Directives

The directive evaluates a conditional expression and perfahmsssociated action only when the conditional expression
evaluates to &rue value:

say Hello, Bob! if $name eq Bob;

This postfix form is useful for simple expressions. A blookrh groups multiple expressions into a single unit:
if (fname eq Bob)
{

say Hello, Bob!;
found_bob();

While the block form requires parentheses around its canmdithe postfix form does not. The conditional expressiog aiso
be complex:
if (fname eq Bob && not greeted_bob())

say Hello, Bob!;
found_bob();

...though in this case, adding parentheses to the postfiditonal expression may add clarity, though tieedto add paren-
theses may argue against using the postfix form.

greet_bob() if ($name eq Bob && not greeted_bob());

The directive is a negated form of . Perl will evaluate the following statement when the caod@l expression
evaluates tdalse

say "Youre no Bob!" unless $name eq Bob;

Like also has a block form. Unlike , the block form of is much rarer than its postfix form:
unless (is_leap_year() and is_full_moon())

frolic();
gambol();

works very well for postfix conditionals, especially pareter validation in functions (see Postfix Parameter Vaiita
page 152):

23

Modern Perl

sub frolic

{

return unless @_;

for my $chant (@_)
{

can be dif cult to read with multiple conditions; this is oneason it appears rarely in its block form.

The block forms of and both work with the directive, which provides code to run when the conditional
expression does not evaluate to true (foy or false (for):

if (name eq Bob)
{

say Hi, Bob!;
greet_user();

}

else

{
say "I dont know you.";
shun_user();

blocks allow you to rewrite and conditionals in terms of each other:

unless ($name eq Bob)

say "I dont know you.";
shun_user();

}

else

{
say Hi, Bob!;
greet_user();

If you read the previous example out loud, you may notice thiewaard pseudocode phrasing: “Unless this name is Bob, do
this. Otherwise, do something else.” The implied doubleatigg can be confusing. Perl provides bothand to allow

you to phrase your conditionals in the most natural and tdadsay. Likewise, you can choose between positive and ivegat
assertions with regard to the comparison operators you use:

if (name ne Bob)

{
say "I dont know you.";
shun_user();

}

else

{
say Hi, Bob!;
greet_user();

The double negative implied by the presence of the block argues against this particular phrasing.

One or more directives may follow an block form and may precede any single . You may use as many
blocks as you like, but you may not change the order in whierblbck types appear:

if ($name eq Bob)
{

say Hi, Bob!;
greet_user();

elsif ($name eq Jim)

{

24

The Perl Language

say Hi, Jim!;
greet_user();

}

else

{
say “"Youre not my uncle.";
shun_user();

You may also use the block with an chain, but the resulting code may be unclear. There is no

There is no construct?, so this code contains a syntax error:

if (name eq Rick)
{

say Hi, cousin!;

}

warning; syntax error
else if ($name eq Kristen)

{
}

say Hi, cousin-in-law!;

The Ternary Conditional Operator
Theternary conditionabperator offers an alternate approach to control flow. dl@ates a conditional expression and evaluates
to one of two different results:

my $time_suffix = after_noon($time) ? morning : afterno on;

The conditional expression precedes the question marlactear() and the colon character)separates the alternatives. The
alternatives are literals or (parenthesized) expressibasbitrary complexity, including other ternary conditel expressions,
though readability may suffer.

An interesting, though obscure, idiom is to use the ternanddional to select between alternativariables not

only values:
push @{ rand() > 0.5 ? \@red_team : \@blue_team },
Player->new();

Again, weigh the benefits of clarity versus the benefitsaidseness.

Short Circuiting

Perl exhibitsshort-circuitingbehavior when it encounters complex expressions—expressimmposed of multiple evaluated
expressions. If Perl can determine that a complex expres#inld succeed or fail as a whole without evaluating evebesu
pression, it will not evaluate subsequent subexpressidrs.is most obvious with an example:

see preface
use Test:More no_plan;

say "Both true!" if ok(1, first subexpression)
&& ok(1, second subexpression);

done_testing();

This example prints:

L arry prefers for aesthetic reasons, as well the prior art of the Ada prognang language.

25

Modern Perl

The return value of (see Testing, page 123) is the boolean value obtained byatiz) the first argument.

ok 1 - first subexpression
ok 2 - second subexpression
Both true!

When the first subexpression—the first call to—evaluates to true, Perl must evaluate the second subexpre¥ghen
the first subexpression evaluates to false, the entireesgn cannot succeed, and there is no need to check subseque
subexpressions:

say "Both true!" if ok(0, first subexpression)
&& 0ok(1, second subexpression);

This example prints:

not ok 1 - first subexpression

Even though the second subexpression would obviously ed¢derl never evaluates it. The logic is similar for a comple
conditional expression where either subexpression mustibdor the conditional as a whole to succeed:

say "Either true!" if ok(1, first subexpression)
|| ok(1, second subexpression);

This example prints:

ok 1 - first subexpression
Either true!

Again, with the success of the first subexpression, Perbgaid evaluating the second subexpression. If the firstspitession
were false, the result of evaluating the second subexpressiuld dictate the result of evaluating the entire expogss

Besides allowing you to avoid potentially expensive corafiahs, short circuiting can help you to avoid errors andniveys:

if (defined $barbeque and $barbeque eq pork shoulder) { .. .}

Context for Conditional Directives

The conditional directives— , , and the ternary conditional operator—all evaluate an esgioe in boolean context
(see Context, page 3). As comparison operators such,as, ,and all produce boolean results when evaluated, Perl
coerces the results of other expressions—including va$adohd values—into boolean forms. Empty hashes and arrdystva
to false.

Perl 5 has no single true value, nor a single false value. Amgber that evaluates to 0 is false. This includes , ,
and so on. The empty string () and evaluate to false, but the strings , and so on do not. The idiom

evaluates to 0 in numeric context but evaluates to true indamocontext, thanks to its string contents. Both the empty
list and evaluate to false. Empty arrays and hashes return the nubnibescalar context, so they evaluate to false in
boolean context.

An array which contains a single element—even —evaluates to true in boolean context. A hash which contaiys a
elements—even a key and a value of —evaluates to true in boolean context.

26

The Perl Language

The module available from the CPAN allows you to detect booleamtext within your own functions. The
core pragma (see Overloading, page 145) allows you to specifyt wiia own data types produg
when evaluated in a boolean context.

D

Looping Directives
Perl also provides several directives for looping and tiena

The foreachstyle loop evaluates an expression which produces a lseaacutes a statement or block until it has consumed
that list:

foreach (1 .. 10)
{

}

say "'$_ + $_="8% * $;

This example uses the range operator to produce a list @f@réérom one to ten inclusive. The directive loops over
them, setting the topic variable (see The Default Scalar Variable, page 6) to each in turd.eRecutes the block for each
integer and prints the squares of the integers.

Perl treats the builtins and interchangeably. The remainder of the syntax of the looprdahes the
behavior of the loop. Though experienced Perl programnead to refer to the loop with automatic iteration as a
loop, you can use safely and clearly any place you might want to use

Like and , the loop has a postfix form:

say '$ + $_ ="8% + $_for 1 . 10;

Similar suggestions apply for clarity and complexity.

A loop may use a named variable instead of the topic:

for my $i (1 .. 10)
{

say "$i o+ $i =", $i * $i;

In this case, Perl will not set the topic variable] to the iterated values. As well, the scope of the variablés only valid
within the loop. If you have declared a lexical in an outer scope, its value will persist outside the loop:

my $i = cow;
for my $i (1 .. 10)

say "$i o+ $i =", $i * $i;
}

is($i, cow, Lexical variable not overwritten in outer sc ope);

This localization occurs even if you do not redeclare thetien variable as a lexickt

12 butdodeclare your iteration variables as lexicals to reduce $wipe.

27

Modern Perl

my $i = horse;

for $i (1 .. 10)
{

}

is($i, horse, Lexical variable still not overwritten in outer scope);

say "$i + $i =", $i * $i;

Iteration and Aliasing
The loop aliasesthe iterator variable to the values in the iteration such #imy modifications to the value of the iterator
modifies the iterated value in place:

my @nums = 1 .. 10;
$_ == 2 for @nums;

is($nums[0], 1, 1 * 1is 1);
is($numsl[1], 4, 2 * 20is 4);

is($nums[9], 100, 10 * 10 is 100);

This aliasing also works with the block style loop:

for my $num (@nums)

$num = = 2;

...as well as iteration with the topic variable:

for (@nums)

$ = 2;

You cannot use aliasing to modigpnstantvalues, however:

for (qw(Huex Dewex Louie))

$_++;
say;

... as this will throw an exception about modification ofdeanly values. There's little point in doing so anyhow.

You may occasionally see the use of with a single scalar variable to alias to the variable:
for ($user_input)

s/(\w)\\$1/g; # escape non-word characters
siNs *|\s$/g; # trim whitespace

Iteration and Scoping

Iterator scoping with the topic variable provides one comraource of confusion. In this case, modifies
on purpose. If called other code which modified without explicitly localizing , the iterated value
in would change. Debugging this can be troublesome:

28

The Perl Language

for (@values)

some_function();

}
sub some_function

s/foo/bar/;

If you mustuse rather than a named variable, make the topic variable lewith

sub some_function_called_later

{
was $_ = shift;
my $_ = shift;

s/foo/bar/;
s/baz/quux/;

return $_;

Using a named iteration variable also prevents undesiiasiiad) behavior through .

The C-Style For Loop

The C-stylefor loop allows the programmer to manage iteration manually:

for (my $i = 0; $i <= 10; $i += 2)
{
say "$i o+ $i =", $i * $i;

You must assign to an iteration variable manually, as treem@idefault assignment to the topic variable. Consequémghe is
no aliasing behavior either. Though the scope of any detlasecal variable is to the body of the block, a variabte declared
explicitly in the iteration control section of this consttwvill overwrite its contents:

my $i = pig;
for ($i = 0; $i <= 10; $i += 2)

say "$i o+ $i =", $i * $i;
}

isnt($i, pig, $i overwritten with a number);

This loop has three subexpressions in its looping constiithe first subexpression is an initialization section. Xeeutes
once, before the first execution of the loop body. The secuiixpression is the conditional comparison subexpresBierl

evaluates this subexpression before each iteration obthebhody. When the subexpression evaluates to a true vakimdh

iteration proceeds. When the subexpression evaluates geaviue, the loop iteration stops. The final subexpressi@cutes
after each iteration of the loop body.

This may be more obvious with an example:
declared outside to avoid declaration in conditional
my $i;
for (

loop initialization subexpression

say Initializing and $i = 0;

conditional comparison subexpression
say "lteration: $i" and $i < 10;

iteration ending subexpression

29

Modern Perl

say Incrementing $i and $i++

say "$i * $i =", $i * $i;

Note the lack of a trailing semicolon at the iteration endéadpexpression as well as the use of the low-precedencethis
syntax is surprisingly finicky. When possible, prefer the style loop to the loop.

All three subexpressions are optional. You may write amitgiloop with:
for) { .. }

While and Until

A while loop continues until the loop conditional expression estds to a boolean false value. An infinite loop is much cleare
when written:

while (1) { ... }

The means of evaluating the end of iteration condition in a loop differs from a loop in that the evaluation of
the expression itself does not produce any side effects. If has one or more elements, this code is also an infinite loop:

while (@values)

say $values[O0];
To prevent such an infinite loop, use aestructive updatef the array by modifying the array with each loop
iteration:

while (my $value = shift @values)

say $value;
The until loop reverses the sense of the test of the loop. Iteration continues while the loop conditional exgzien
evaluates to false:

until ($finished_running)

{
}

The canonical use of the loop is to iterate over input from a filehandle:

use autodie;
open my $fth, <, $file;

while (<$fh>)
{

Perl 5 interprets this loop as if you had written:

while (defined($_ = <$fh>))
{

30

The Perl Language

One common mistake is to forget to remove the line-endingaditars from each line; use the builtin to do

So.
Without the implicit , any line read from the filehandle which evaluated to fafsa scalar context—a blank line or a
line which contained only the character~would end the loop. The () operator returns an undefined value only
when it has finished reading lines from the file.

Both and have postfix forms. The simplest infinite loop in Perl 5 is:

1 while 1;

Any single expression is suitable for a postfix ~ or , such as the classic “Hello, world!” example from 8-bit camyp

ers of the early 1980s:

print "Hello, world! " while 1;

Infinite loops may seem silly, but they're actually quitestid. A simple event loop for a GUI program or network serverym
be:

$server->dispatch_results() until $should_shutdown;

For more complex expressions, use ablock:

do
{

say What is your name?;

my $name = <>;

chomp $name;

say "Hello, $name!" if $name;
} until (eof);

For the purposes of parsing, a block is itself a single expression, though it can contairess expressions. Unlike the
loop's block form, the block with a postfix or will execute its body at least once. This construct is lessroon
than the other loop forms, but no less powerful.

Loops within Loops
You may nest loops within other loops:

for my $suit (@suits)

for my $values (@card_values)

{
}

In this case, explicitly declaring named variables is eiabto maintainability. The potential for confusion as etscoping of
iterator variables is too great when using the topic vaeabl

A common mistake with nesting and loops is that it is easy to exhaust a filehandle witha loop:

use autodie;
open my $fh, <, $some_file;

for my S$prefix (@prefixes)

31

Modern Perl

DO NOT USE; likely buggy code
while (<$fh>)
{

say $prefix, $_;

Opening the filehandle outside of the loop leaves the file position unchanged between eachieraf the loop. On

its second iteration, the loop will have nothing to read and will not execute. To solis problem, you may re-open the
file inside the loop (simple to understand, but not always a good use of sytsources), slurp the entire file into memory
(which may not work if the file is large), or the filehandle back to the beginning of the file for eachat®m (an often
overlooked option):

use autodie;

open my $fh, <, $some_file;

for my $prefix (@prefixes)
\{Nhile (<$fh>)

say $prefix, $_;

seek $th, 0, O;

Loop Control

Sometimes you need to break out of a loop before you have stdththe iteration conditions. Perl 5's standard control
mechanisms—exceptions and —work, but you may also udeop controlstatements.

The nextstatement restarts the loop at its next iteration. Use itniywau've done all you need to in the current iteration. To
loop over lines in a file but skip everything that looks like@mment, one which starts with the charactgyou might write:

while (<$fh>)
{

next if NA#/;

The last statement ends the loop immediately. To finish processifilg @nce you've seen the ending delimiter, you might
write:

while (<$fh>)
{

next if NA#/,
last if NA__END__/

Theredostatement restarts the current iteration without evatgatie conditional again. This can be useful in those fewsase
where you want to modify the line you've read in place, theartgprocessing over from the beginning without clobbering i
with another line. For example, you could implement a silly parser that joins lines which end with a backslash with:

while (my $line = <$fh>)
{
chomp $line;

match backslash at the end of a line
if ($line =~ s{\$}{})
{

$line .= <$fth>;
redo;

32

The Perl Language

..though that's a contrived example.

Nested loops can make the use of these loop control statemeiguous. In those casedpap labelcan disambiguate:

OUTER:
while (<$fh>)
{

chomp;

INNER:
for my $prefix (@prefixes)
{

next OUTER unless $prefix;
say "$prefix: $_";

If you find yourself nesting loops such that you need labelmtainage control flow, consider simplifying your code: @gré
extracting inner loops into functions for clarity.

Continue
The construct behaves like the third subexpression of aloop; Perl executes its block for each iteration of the loop,
even when you exit an iteration with ', You may use it with a , , or loop. Examples of

are rare, but it's useful any time you want to guarantee tbatething occurs for every iteration of the loop regardledsomy
that iteration ends:

while ($i < 10)
{

next unless $i % 2
say $i;
}

continue

{

say Continuing...;

Pi++;
}
Given/When
The construct is a feature new to Perl 5.10. It assigns the vdla@ expression to the topic variable and introduces a
block:

given ($name)

Unlike ,itdoes not iterate over an aggregate. It evaluates itevalscalar context, and always assigns to the topic variable

given (my $username = find_user())

is($username, $_, topic assignment happens automaticall y)

also makes the topic variable lexical to prevent accidentaification:

13The Perl equivalent to C's is

33

Modern Perl

given (mouse)

say;
mouse_to_man($_);
say;

}

sub mouse_to_man

$ = shift;

s/mouse/man/;

is most useful when combined with . topicalizesa value within a block so that multiple statements can
match the topic against expressions usngart-matchsemantics. To write the Rock, Paper, Scissors game:

my @options = (\&rock, \&paper, \&scissors);

do
{
say "Rock, Paper, Scissors! Pick one: ";
chomp(my $user = <STDIN>);
my $computer_match = $options[rand @options J;
$computer_match->(Ic($user));
} until (eof);

sub rock

{
print "I chose rock.
given (shift)
{

when (/paper/) { say You win! };

when (/rock/) { say We tie! }
when (/scissors/) { say | win! }
default { say "I dont understand your move" };
}
}
sub paper

print "I chose paper. *;
given (shift)
{

when (/paper/) { say We tie!l }

when (/rock/) { say | win! }
when (/scissors/) { say You win! };
default { say "I dont understand your move" };

}

sub scissors
print "I chose scissors. ";
given (shift)
{

when (/paper/) { say 1 win! h

when (/rock/) { say You win! };
when (/scissors/) { say We tie! }
default { say "I dont understand your move" };
}
}
Perl executes the rule when none of the other conditions match.
The CPAN module allows another technique to reduce this code further.
The construct is even more powerful; it can match (see Smart itade page 98) against many other types of expressions

including scalars, aggregates, references, arbitrarypaason expressions, and even code references.

34

The Perl Language

Tailcalls

A tailcall occurs when the last expression within a function is a cadintother function—the return value of the outer function
is the return value of the inner function:

sub log_and_greet_person

{
my $name = shift;
log("Greeting $name");

return greet_person($name);

In this circumstance, returning from directly to the caller of is more ef cient
than returning to and immediately returninfjom . Returning directly
from to the caller of is an optimization known atailcall optimization

Perl 5 will not detect cases where it could apply this optatian automatically.

Heavily recursive code (see Recursion, page 69), espeniallually recursive code, can consume a lot of memory.
Tailcalls reduce the memory needed for internal bookkegpfrtontrol flow, which can make otherwise expensjve
algorithms tractable.

Scalars

Perl 5's fundamental data type is thealar, which represents a single, discrete value. That value raaydiring, an integer, a
floating point value, a filehandle, or a reference—but itlisays a single value. Scalar values and scalar context hdeeja
connection; assigning to a scalar provides scalar context.

Scalars may be lexical, package, or global (see Global M@sapage 153) variables. You may only declare lexical ckage
variables. The names of scalar variables must conform talatd variable naming guidelines (see Names, page 13)arScal
variables always use the leading dollar-sighgigil (see Variable Sigils, page 15).

The converse is natniversallytrue; the scalar sigil applied to an operation on an aggeegaiable—an array or
a hash—determines the amount type accessed through thatioper

Scalars and Types

Perl 5 scalars do not have static typing. A scalar variabtecoetain any type of scalar value without special convassiar
casts, and the type of value in a variable can change. Thisisddgal:

my $value;

$value = 123.456;

$value = 77;

$value = "I am Chucks big toe.”;

$value Store::IceCream->new();

Yet even though this ikegal, it can be confusing. Choose descriptive and unique name®to variables to avoid this confu-
sion.

The type context of evaluation of a scalar may cause Perldcedhe value of that scalar (see Coercion, page 47). Forgga
you may treat the contents of a scalar as a string, even if idnit @xplicitly assign it a string:

my $zip_code = 97006;
my $city_state_zip = Beaverton, Oregon . . $zip_code;

35

Modern Perl

You may also use mathematical operations on strings:

my $call_sign = KBMIU;
my $next_sign = $call_sign++;

also fine as
$next_sign = ++Scall_sign;

but does not work as:
$next_sign = $call_sign + 1;

This magical string increment behavior does not have a spording magical decrement behavior. You can't get
the previous string value by writing

This string increment operation turndnto and into , respecting character set and case. Whilebecomes
becomes —numbers wrap around while there are more significant plaxexrement, as on a vehicle odometer.

Evaluating a reference (see References, page 50) in swoittgxd produces a string. Evaluating a reference in nunceritext
produces a number. Neither operation modifies the referamplace, but you cannot recreate the reference from eiitiger
string or numeric result:

my $authors = [qw(Pratchett Vinge Conway)];
my $stringy_ref = . $authors;
my $numeric_ref = 0 + $authors;
is still useful as a reference, but is a string with no connection to the reference and

is a number with no connection to the reference.

All of these coercions and operations are possible becaedesBcalars can contain numeric parts as well as string.part
The internal data structure which represents a scalar ih5Pleais a numeric slot and a string slot. Accessing a string in a
numeric context eventually produces a scalar with botimgtand numeric values. The function within the core
module allows you to manipulate both values directly withisingle scalar. Similarly, the module's
function returns true if the scalar value provided is sonimgffPerl 5 would interpret as a number.

Scalars do not have a separate slot for boolean values. Iedooontext, the empty string () and are false. All other
strings are true. In boolean context, numbers which evalioatero (, ,and) are false. All other numbers are true.

Be careful that thestrings and are true; this is one place where Perl 5 makes a distinctibmdes what looks
like a number and what really is a number.

One other value is always false: . This is the value of uninitialized variables as well as aiggh its own right.

Arrays

Perl 5arraysare data structures which store zero or more scalars. Eiingt-classdata structures, which means that Perl 5
provides a separate data type at the language level. Artgyog indexed access; that is, you can access individualbress
of the array by integer indexes.

The sigil denotes an array. To declare an array:

my @items;

Array Elements

Accessinan individual element of an array in Perl 5 requires the scsitdl. Perl 5 (and you) can recognize that
refers to the array even despite the change of sigil because the squanketsd) always identify indexed access to an
aggregate variable. In simpler terms, that means “look wgtbimg in a group of things by an integer”.

The first element of an array is at index zero:

36

The Perl Language

@cats contains a list of Cat objects
my $first_cat = $cats[0];

The last index of an array depends on the number of elemetits @rray. An array in scalar context (due to scalar assighme
string concatenation, addition, or boolean context) esalsito the number of elements contained in the array:

scalar assignment
my $num_cats = @cats;

string concatenation
say | have . @cats . cats!;

addition
my $num_animals = @cats + @dogs + @fish;

boolean context
say Yep, a cat owner! if @cats;

If you need the specific index of the final element of an arsaptract one from the number of elements of the array (lsecau
array indexes start at 0):

my $first_index = O;
my $last_index = @cats - 1,

say My first cat has an index of $first_index,
. and my last cat has an index of $last_index.

You can also use the special variable form of the array to ttedlast index; replace thearray sigil with the slightly more
unwieldy

my $first_index = 0;
my $last_index = $#cats;

say My first cat has an index of $first_index,
. and my last cat has an index of $last_index.

That may not read as nicely, however. Most of the time youtdoeed that syntax, as you can use negative offsets to aatess a
array from the end instead of the start. The last element afriay is available at the index . The second to last element of
the array is available at index , and so on. For example:

my $last_cat = S$cats[-1];
my $second_to_last_cat = $cats[-2];

You can resize an array by assigning ta If you shrink an array, Perl will discard values which do fibin the resized array.
If you expand an array, Perl will fill in the expanded valuggw

Array Assignment
You can assign to individual positions in an array directyifdex:

my @cats;

$cats[0] = Daisy;
$cats[1] = Petunia;
$cats[2] = Tuxedo;
$cats[3] = Jack;
$cats[4] = Brad;

Perl 5 arrays are mutable. They do not have a static sizegtkiigand or contract as necessary.
Assignment in multiple lines can be tedious. You can inizgkn array from a list in one step:

my @cats = (Daisy, Petunia, Tuxedo, Jack, Brad);

37

Modern Perl

You don't have to assign in order, either. If you assign toratek beyond where you've assigned before, Perl will
extend the array to account for the new size and will fill ihirilermediary slots with

Remember that the parenthesiesnotcreate a list. Without parentheses, this would assign as the first and
only element of the array, due to operator precedence (ssedence, page 59).

Any expression which produces a list in list context cangassd an array:

my @cats = get_cat_list();
my @timeinfo = localtime();
my @nums =1 . 10;

Assigning to a scalar element of an array imposes scalaexpnthile assigning to the array as a whole imposes listecdnt

To clear an array, assign an empty list:

my @dates = (1969, 2001, 2010, 2051, 1787);

@dates = ()

As freshly-declared arrays start out empty, is a longer version of . Prefer the latter

Array Slices

You can also access elements of an array in list context withnatruct known as aarray slice Unlike scalar access of an
array element, this indexing operation takes a list of iadiand uses the array sigil)(

my @youngest_cats = @cats[-1, -2];
my @oldest_cats = @cats[0 .. 2];
my @selected_cats = @cats[@indexes];

You can assign to an array slice as well:

@users[@replace_indices] = @replace_users;

A slice can contain zero or more elements—including one:

single-element array slice; function call in list context
@cats[-1] = get_more_cats();

single-element array access; function call in scalar context
$cats[-1] = get_more_cats();

The only syntactic difference between an array slice of dament and the scalar access of an array element is the ¢eadin
sigil. Thesemantidifference is greater: an array slice always imposes listexd. Any array slice evaluated in scalar context
will produce a warning:

Scalar value @cats[1] better written as $cats[1] at...

An array slice imposes list context (see Context, page 3hemxpression used as its index:

function called in list context
my @cats = @cats[get_cat_indices()];

38

The Perl Language

Array Operations

Managing array indices can be a hassle. Because Perl 5 candemp contract arrays as necessary, the language alsal@sovi
several operations to treat arrays as stacks, queues, alikieth

The and operators add and remove elements from the tail of the aeayectively:

my @meals;

what is there to eat?
push @meals, gw(hamburgers pizza lasagna turnip);

... but the nephew hates vegetables
pop @meals;

You may as many elements as you like onto an array. Its second argumarist of values. You may only one
argument at a time. returns the updated number of elements in the arrayreturns the removed element.

Similarly, and add elements to and remove an element from the start of ay1 arra
expand our culinary horizons
unshift @meals, qw(tofu curry spanakopita taquitos);

rethink that whole soy idea
shift @meals;

prepends a list of zero or more elements to the start of tlag amd returns the new number of elements in the array.
removes and returns the first element of the array.

Few programs use the return values of and . Writing this chapter led to a patch to Perl 5 to optimize
the use of in void context.

is another important—if less frequently used—array operétormoves and replaces elements from an array given an
offset, a length of a list slice, and replacements. Bothagph and removing are optional; you may omit either belraiioe
description of demonstrates its equivalences with , , ,and

Arrays often contain elements to process in a loop (see Ingopirectives, page 27).

As of Perl 5.12, you can use to iterate over an array by index and value:

while (my ($index, $value) = each @bookshelf)
{

say "#$index: $value";

Arrays and Context

In list context, arrays flatten into lists. If you pass mpiii arrays to a normal Perl 5 function, they will flatten irtsingle list:
my @cats = qw(Daisy Petunia Tuxedo Brad Jack);

my @dogs = qw(Rodney Lucky);

take_pets_to_vet(@cats, @dogs);

sub take_pets_to_vet

{

do not use!
my (@cats, @dogs) = @_;

39

Modern Perl

Within the function, will contain seven elements, not two. Similarly, list assigent to arrays igreedy An array will
consume as many elements from the list as possible. Afteaghiggnment, will contain everyargument passed to the
function. will be empty.

This flattening behavior sometimes confuses novices wigorgdt to create nested arrays in Perl 5:

creates a single array, not an array of arrays
my @array_of arrays = (1 .. 10, (11 .. 20, (21 .. 30)));

While some people may initially expect this code to producaraay where the first ten elements are the numbers one throug
ten and the eleventh element is an array containing the nisnelven through 20 and an array containing the numbersywen
one through thirty, this code instead produces an arrayagung the numbers one through 30, inclusive. Remember that
parentheses do noteatelists in these circumstances—they only group expressions.

The solution to this flattening behavior is the same for pasarrays to functions and for creating nested arrays (SeayA
References, page 51).

Array Interpolation
Arrays interpolate in double quoted strings as a list of thimgification of each item separated by the current valfithe
magic global . The default value of this variable is a single spaceEhglish.pmmnemonic is . Thus:

my @alphabet = a .. z;
say "[@alphabet]";
[abcdefghijklmnopgrstuvwxy?Z]

Temporarily localizing and assigning another value tdor debugging purposes is very hantty

whats in this array again?

local $" =)(;
say "(@sweet_treats)";

...which produces the result:

(pie)(cake)(doughnuts)(cookies)(raisin bread)

Hashes

A hashis a first-class Perl data structure which associatesgskenys with scalar values. You might have encountered them as
tables associative arraygdictionaries or mapsin other programming languages. In the same way that the w&meariable
corresponds to a storage location, a key in a hash refersae.v

A well-respected, if hoary, analogy is to think of a hash ljkel would a telephone book: use your friend's name to lookerp h
number.

Hashes have two important properties. First, they storesea&ar per unique key. Second, they do not provide any specif
ordering of keys. A hash is a big container full of key/valérg.

Declaring Hashes
A hash has the sigil. Declare a lexical hash with:

my %favorite_flavors;

14Due credit goes to Mark-Jason Dominus for demonstrating ##imele several years ago.

40

The Perl Language

A hash starts out empty, with no keys or values. In booleartestna hash returns false if it contains no keys. Otherwise,
returns a string which evaluates to true.

You can assign and access individual elements of a hash:
my %favorite_flavors;

$favorite_flavors{Gabi} = Raspberry chocolate ;
$favorite_flavors{Annette} = French vanilla;

Hashes use the scalar sigilvhen accessing individual elements and curly bracesfor string indexing.
You may assign a list of keys and values to a hash in a singleession:

my %favorite_flavors = (
Gabi , Raspberry chocolate ,
Annette, French vanilla,

If you assign an odd number of elements to the hash, you vadlive a warning that the results are not what you anticipated
It's often more obvious to use tHat commaoperator () to associate values with keys, as it makes the pairing misiiel®.
Compare:

my %favorite_flavors = (
Gabi => Mint chocolate chip,
Annette => French vanilla,

..to:

my %favorite_flavors = (
Jacob, anything,
Floyd , Pistachio,

The fat comma operator acts like the regular comma, but @ edsises the Perl parser to treat the previous bareword (see
Barewords, page 156) as if it were a quoted word. The pragma will not warn about the bareword, and if you have a
function with the same name as a hash key, the fat commaatitall the function:

sub name { Leonardo }

my %address =

(
);

name => 1123 Fib Place,
The key of the hash will be and not . If you intend to call the function to get the key, make thedtion call
explicit:

my %address =

(
name() => 1123 Fib Place,

To empty a hash, assign to it an empty*fist

%favorite_flavors = ();

15Unary also works, but it's somewhat more rare.

41

Modern Perl

Hash Indexing

Because a hash is an aggregate, you can access individuaswaith an indexing operation. Use a key as an indekeyed
accesoperation) to retrieve a value from a hash:

my $address = $addresses{$name};

In this example, contains a string which is also a key of the hash. As with aingsan individual element of an array,
the hash's sigil has changed fronto to indicate keyed access to a scalar value.

You may also use string literals as hash keys. Perl quotesvoads automatically according to the same rules as fat @snm

auto-quoted
my $address = $addresses{Victor};

needs quoting; not a valid bareword
my $address = $addresses{ Sue-Linn }

function call needs disambiguation
my $address = $addresses{get_name 0%k

You might find it clearer always to quote string literal hdsdys, but the autoquoting behavior is so well establisheieir 5
culture that it's better to reserve the quotes for extrawn circumstances, where they broadcast your intentido something
different.

Even Perl 5 builtins get the autoquoting treatment:

my %addresses =

(
Leonardo => 1123 Fib Place,

Utako => Cantor Hotel, Room 1,
)i

sub get_address_from_name

return $addresses{ +shift};

The unary plus (see Unary Coercions, page 153) turns whativibgua bareword () subject to autoquoting rules into an
expression. As this implies, you can use an arbitrary espyas—not only a function call—as the key of a hash:

dont actually do this though
my $address = $addressesf{reverse odranoel };

interpolation is fine
my $address = $addresses{"$first_name $last_name"};

so are method calls
my $address = $addresses{ $user->name() };

Anything that evaluates to a string is an acceptable hash¥egourse, hash keys can only be strings. If you use an oageat
hash key, you'll get the stringified version of that objatstead of the object itself:

for my $isbn (@isbns)
{
my $book = Book->fetch_by_isbn($isbn);

unlikely to do what you want
$books{$hook} = $book->price;

42

The Perl Language

Hash Key Existence
The operator returns a boolean value to indicate whether a haghios the given key:

my %addresses =

(
Leonardo => 1123 Fib Place,

Utako => Cantor Hotel, Room 1,
)i
say "Have Leonardos address" if exists $addresses{Leonar do};
say "Have Warnie s address"” if exists $addresses{Warnie};
Using instead of accessing the hash key directly avoids two pnahl&irst, it does not check the boolean nature of the

hashvalue a hash key may exist with a value even if that value evaluatasoolean false (including):

my %false_key value = (0 =>);
ok(%false_key_value,
hash containing false key & value should evaluate to a true v alue);

Second, avoids autovivification (see Autovivification, page 57itkin with nested data structures.

The corresponding operator for hash values is . If a hash key exists, its value may be . Check that with

$addresses{Leibniz} = undef;
say "Gottfried lives at $addresses{Leibniz}"

if exists $addresses{Leibniz}
&& defined $addresses{Leibniz};

Accessing Hash Keys and Values
Hashes are aggregate variables, but they behave sligffdyatitly from arrays. In particular, you can iterate oves keys of a
hash, the values of a hash, or pairs of keys and values. Theoperator returns a list of keys of the hash:

for my $addressee (keys %addresses)

{
}

say "Found an address for $addressee!”;

The operator returns a list of values of the hash:

for my $address (values %addresses)

{
}

say "Someone lives at $address";

The operator returns a list of two-element lists of the key arevélue:

while (my ($addressee, $address) = each %addresses)

say "$addressee lives at $address"”;

}

Unlike arrays, there is no obvious ordering to the list of&eyvalues. The ordering depends on the internal implertientaf
the hash, which can depend both on the particular versioeibfyBu are using, the size of the hash, and a random factain. Wi
that caveat in mind, the order of items in a hash is the same for, ,and . Modifying the hash may change the
order, but you can rely on that order if the hash remains theesa

Each hash has onlysingleiterator for the operator. You cannot reliably iterate over a hash with more than once; if
you begin a new iteration while another is in progress, tihenér will end prematurely and the latter will begin partwhydugh
the hash.

Reset a hash's iterator with the use of or in void context:

43

Modern Perl

reset hash iterator
keys %addresses;

while (my ($addressee, $address) = each %addresses)

You should also ensure that you do not call any function winiely itself try to iterate over the hash with

The single hash iterator is a well-known caveat, but it dbesme up as often as you might expect. Be cautiqus,
but use when you need it.

Hash Slices

As with arrays, you may access a list of elements of a hasheroperation. Ahash sliceis a list of keys or values of a hash.
The simplest explanation is initialization of multiple elents of a hash used as an unordered set:

my %cats;
@cats{qw(Jack Brad Mars Grumpy)} = (1) x 4;

This is equivalent to the initialization:

my %cats = map { $_ => 1 } qw(Jack Brad Mars Grumpy);

...except that the hash slice initialization doesnepiacethe existing contents of the hash.

You may retrieve multiple values from a hash with a slice:

my @buyer_addresses = @addresses{ @buyers };

As with array slices, the sigil of the hash changes to indidiat context. You can still tell that is a hash by the
use of the curly braces to indicate keyed access.

Hash slices make it easy to merge two hashes:
my %addresses = (..)
my %canada_addresses = (...);

@addresses{ keys %canada_addresses } = values %canada_add resses;

This is equivalent to looping over the contents of manually, but is much shorter.

The choice between the two approaches depends on your nteaitggg. What if the same key occurs in bath
hashes? The hash slice approach always overwrites exigyigalue pairs in

The Empty Hash

An empty hash contains no keys or values. It evaluates te fials boolean context. A hash which contains at least one&ieyy
pair evaluates to true in a boolean context even if all of #eslor all of the values or both would themselves evaluatalse f
in a boolean context.

44

The Perl Language

use Test::More;

my %empty;
ok(! %empty, empty hash should evaluate to false);

my %false_key = (0 => true value);
ok(%false_key, hash containing false key should evaluate to true);

my %false_value = (true key => 0);
ok(%false_value, hash containing false value should eval uate to true);

done_testing();

In scalar context, a hash evaluates to a string which repiesee number of hash buckets used out of the number of hash
buckets allocated. This is rarely useful, as it representiésnal details about hashes that are almost always mdassng Perl
programs. You can safely ignore it.

In list context, a hash evaluates to a list of key/value psiirslar to what you receive from the operator. However, you
cannotiterate over this list the same way you can iterate over giglioduced by , as the loop will loop forever, unless
the hash is empty.

Hash Idioms

Hashes have several uses, such as finding unique elemelig¢sadr arrays. Because each key exists only once in a hash,
assigning the same key to a hash multiple times stores oaljntst recent key:

my %unig;
undef @unig{ @items };
my @uniques = keys %uniq;

The use of the operator with the hash slice sets the values of the hash to . This is the cheapest way to determine if
an item exists in a set.

Hashes are also useful for counting elements, such as d IRRtagldresses in a log file:

my %ip_addresses;
while (my $line = <$logfile>)

my ($ip, $resource) = analyze_line($line);
$ip_addresses{$ip}++;

The initial value of a hash value is . The postincrement operator () treats that as zero. This in-place modification of
the value increments an existing value for that key. If nwgaxists for that key, it creates a value () and immediately
increments it to one, as the numification of ~ produces the value O.

A variant of this strategy works very well for caching, whgoai might want to store the result of an expensive calcutatiith
little overhead to store or fetch:

my %user_cache;
sub fetch_user
my $id = shift;

$user_cache{$id} ||= create_user($id);
return $user_cache{S$id};

45

Modern Perl

This orcish maneuveéf returns the value from the hash, if it exists. Otherwiseaitalates the value, caches it, and then returns
it. Beware that the boolean-or assignment operator) operates on boolean values; if your cached value evaltafatse in
a boolean context, use the defined-or assignment operatoy ifistead:

sub fetch_user

my $id = shift;
$user_cache{$id} /l= create_user($id);
return $user_cache{S$id};

This lazy orcish maneuver tests for the definedness of tkbethvalue, not its boolean truth. The defined-or assighmen
operator is new in Perl 5.10.

Hashes can also collect named parameters passed to fumdfigaur function takes several arguments, you can userpysiu
hash (see Slurping, page 66) to gather key/value pairs isitoge hash:

sub make_sundae

{

my %parameters = @_;

}

make_sundae(flavor => Lemon Burst, topping => cookie bi ts);

You can even set default parameters with this approach:

sub make_sundae

{
my Y%parameters =
$parameters{flavor} /I= Vanilla;
$parametersf{topping} //= fudge ;
$parameters{sprinkles} //= 100;

...orinclude them in the initial declaration and assignnitse|f:

sub make_sundae

{

my %parameters =

(
flavor => Vanilla,
topping => fudge,
sprinkles => 100,
@_,

...as subsequent declarations of the same key with a diffeadue will overwrite the previous values.

Locking Hashes

One drawback of hashes is that their keys are barewords wffiehlittle typo protection (especially compared to theadtion
and variable name protection offered by the pragma). The core module provides mechanisms to restrict
the modification of a hash or the keys allowed in the hash.

To prevent someone from accidentally adding a hash key ybnatiintend (presumably with a typo or with data from untedst
input), use the function to restrict the hash to its current set of keys. Attgrapt to add a key/value pair to the
hash where the key is not in the allowed set of keys will raisexaeption.

160r-cache, if you like puns.

46

The Perl Language

Of course, anyone who needs to do so can always use the function to remove the protection, so do not rely on
this as a security measure against misuse from other progeam

Similarly you can lock or unlock the existing value for a givkey in the hash (and) and
make or unmake the entire hash read-only with and

Coercion

Unlike other languages, where a variable can hold only aquéat type of value (a string, a floating-point number, djeat),
Perl relies on the context of operators to determine howterpmet values (see Numeric, String, and Boolean Contexgep
5). If you treat a number as a string, Perl will do its best tovast that number into a string (and vice versa). This prodes
coercion

By design, Perl attempts to do what you mEathough you must be specific about your intentions.

Boolean Coercion

Boolean coercion occurs when you test thehinessof a valué®, such asina or condition. Numeric 0O is false. The
undefined value is false. The empty string is false, and sbdsstring . Strings which may baeumericallyequal to zero
(such as , ,and) but which arenot aretrue.

All other values are true, including the idiomatic string . In the case of a scalar with both string and numeric
portions (see Dualvars, page 48), Perl 5 prefers to checéttimg component for boolean truth. does evaluate
to zero numerically, but is not the empty string, so it evidgdo true in boolean context.

String Coercion

String coercion occurs when using string operators sucloagarisons (and , for example), concatenation, ,

, and regular expressions. It also occurs when using a valaehash key. The undefined value stringifies to an empty
string, but it produces a “use of uninitialized value” wangi Numbersstringify to strings containing their values. That is, the
value stringifies to the string , such that you can a number into individual digits:

my @digits = split , 1234567890;

Numeric Coercion

Numeric coercion occurs when using humeric comparisonatpes (such as and), when performing mathematic op-
erations, and when using a value as an array or list index.uhldefined valuewumifiesto zero, though it produces a “Use
of uninitialized value” warning. Strings which do not beguith numeric portions also numify to zero, and they produce a
“Argument isn't numeric” warning. Strings which begin witharacters allowed in numeric literals numify to those galuthat
is, numifiesto the same way that numifies to

The core module contains a function which uses the same parsing rules as the Perl 5
grammar to extract a number from a string.

The strings and represent the infinite value and behave as numbers, in ttse skat numifying then
does not produce the “Argument isn't numeric” warning. Tlring represents the concept “not a number”.
Unless you're a mathematician, you may not care.

17CalledDWIM for do what | mearor dwimmery

18Truthiness is like truthfulness if you squint and say “Yegat's true, but. . . .”

47

Modern Perl

Reference Coercion

In certain circumstances, treating a value as a referemns that valuento a reference. This process of autovivification (see
Autovivification, page 57) can be useful for nested datacitires. It occurs when you use a dereferencing operatiom on
non-reference:

my %users;

$users{Bradley}{id} = 228;
$users{Jack}{id} = 229;

Although the hash never contained values for and , Perl 5 helpfully created hash references for those vathes,
assigned them each a key/value pair keyed an

Cached Coercions

Perl 5's internal representation of values stores bothimgstialue and a numeric valtie Stringifying a numeric value does not
replace the numeric value with a string. Insteadftdchesa stringified value to the value in addition to the numeriltiea The
same sort of operation happens when numifying a string value

You almost never need to know that this happens—perhaps ornaéce a decade, if anecdotal evidence is admissible.

Perl 5 may prefer one form over another. If a value has a cacdm@m@sentation in a form you do not expect, relying on an
implicit conversion may produce surprising results. Yom@st never need to be explicit about what you expect, but khetv
caching does occur and you may be able to diagnose an odtaitudnen it occurs.

Dualvars

The caching of string and numeric values allows for the use @fre-but-useful feature known aslaalvar, or a value that
has divergent numeric and string values. The core module provides a function which allows you to
create a value which has specified and divergent numeristimg) values:

use Scalar::Util dualvar ;
my $false_name = dualvar 0, Sparkles & Blue;

say Boolean true! if Il $false_name;
say Numeric false! unless 0 + $false_name;
say String true! if . $false_name;
Packages

A namespacén Perl is a mechanism which associates and encapsulaiesyaamed entities within a named category. It's
like your family name or a brand name, except that it impliegelationship between entities other than categorizatiibi
that name. (Such a relationship often exists, but it doetiae to exist.)

A packagen Perl 5 is a collection of code in a single namespace. In aesempackage and a namespace are equivalent; the
package represents the source code and the namespacemepties entity created when Perl parses that®ode

The builtin declares a package and a namespace:

package MyCode;
our @boxes;

sub add_box { ... }

19This is a simplification, but the gory details are truly gory.

20This distinction may be subtle.

48

The Perl Language

All global variables and functions declared or referred fierathe package declaration refer to symbols within the
namespace. With this code as written, you can refer to the variable from the namespace only by ifslly qualified
name, . Similarly, you can call the function only by . A fully qualified
name includes its complete package name.

The default package isthe package. If you do not declare a package explicitly, whetharone-liner on a command-line
or in a standalone Perl program or even ipmafile on disk, the current package will be the package.

Besides a package name (or or any other allowable identifier), a package has a versiottlaree implicit methods,
, (see Importing, page 67), and . returns the package's version number.

The package's version is a series of numbers contained irtkage global named . By convention, versions tend
to be a series of integers separated by dots, as in or , where each segment is an integer, but there's little beyond
convention.

Perl 5.12 introduced a new syntax intended to simplify warsiumbers. If you can write code that does not need to run on
earlier versions of Perl 5, you can avoid a lot of unnecessamyplexity:

package MyCode 1.2.1;

In 5.10 and earlier, the simplest way to declare the versi@npackage is:

package MyCode;

our $VERSION = 1.21;

The method is available to every package; they inherit it from th base class. It returns the value of
. You may override it if you wish, though there are few reasmndo so. Obtaining the version number of a package
is easiest through the use of the method:
my $version = Some::Plugin->VERSION();
die "Your plugin $version is too old"
unless $version > 2;

Packages and Namespaces

Every declaration creates a new namespace if that namespaceaadseady exist and causes the parser to put all
subsequent package global symbols (global variables amadifuns) into that namespace.

Perl hasopen namespace¥ou can add functions or variables to a namespace at any, pdimer with a new package declara-
tion:

package Pack;

sub first_sub { ... }

package main;

Pack::first_sub();

package Pack;

sub second_sub { ... }

package main;

Pack::second_sub();

...or by fully qualifying function names at the point of dation:
implicit
package main;

sub Pack::third_sub { ... }

49

Modern Perl

Perl 5 packages are so open that you can add to them at any uirimgy dompilation or run time, or from separate files. Of
course, that can be confusing, so avoid it when possible.

Namespaces can have as many levels as you like for orgamabpurposes. These are not hierarchical; there's no ieshn
relationship between packages—only a semantic relatiprisieéadersof the code.

It's common to create a top-level namespace for a busineagpaoject. This makes a convenient organizational tool nbt o
for reading code and discovering the relationships betweerponents but also to organizing code and packages ondigk:

. is the project name
. contains the top-level user interface code
. contains the top-level data management code
. contains the top-level testing code for the project
...and so on.
References

Perl usually does what you expect, even if what you expectiies. Consider what happens when you pass values to faisctio

sub reverse_greeting

{
my $name = reverse shift;
return "Hello, $name!";

}

my $name = Chuck;
say reverse_greeting($name);

say $name;
You probably expect that, outside of the function, contains , even though the value passed into the function gets
reversed into —and that's what happens. The outside the function is a separate scalar from the inside the

function, and each one has a distinct copy of the string. Modj one has no effect on the other.

This is useful and desirable default behavior. If you had &kenexplicit copies of every value before you did anythinthtm
which could possibly cause changes, you'd write lots of@xtnnecessary code to defend against well-meaning butr@uto
modifications.

Other times it's useful to modify a value in place sometimgsvell. If you have a hash full of data that you want to pass to a
function to update or to delete a key/value pair, creatirgyraturning a new hash for each change could be troublesansayit
nothing of inef cient).

Perl 5 provides a mechanism by which you can refer to a valtleowi making a copy of that value. Any changes made to that
referencewill update the value in place, such ttedk references to that value will see the new value. A referemedirst-class
scalar data type in Perl 5. It's not a string, an array, or &ahli's a scalar which refers to another first-class datatyp

Scalar References

The reference operator is the backslash I scalar context, it creates a single reference whickrsab another value. In list

context, it creates a list of references. Thus you can takéesance to from the previous example:
my $name = Llarry;
my $name_ref = \ $name;

To access the value to which a reference refers, you drrsferencet. Dereferencing requires you to add an extra sigil for
each level of dereferencing:

50

The Perl Language

sub reverse_in_place

{
my $name_ref = shift;
$$name_ref = reverse $$name_ref ;

}

my $name = Blabby;
reverse_in_place(\ $name);
say $name;

The double scalar sigil dereferences a scalar reference.

This example isn't useful in the obvious case; why not haesftimction return the modified value directly? Scalar
references are useful when procesdarge scalars; copying the contents of those scalars can use ftiwteoand
memory.

Complex references may require a curly-brace block to disgmate portions of the expression. This is optional forpen
dereferences, though it can be messy:

sub reverse_in_place

{
my $name_ref = shift;
${ $name_ref } = reverse ${ $name_ref }

If you forget to dereference a scalar reference, it wilkgify or numify. The string value will be of the form ,
and the numeric value will be the portion. This value encodes the type of reference (in thégca) and the
location in memory of the reference.

Perl does not offer native access to memory locations. Theead of the reference is a value used as a mostly-
unique identifier, as a reference does not necessarily daname. Unlike pointers in a language such as C, you
cannot modify the address or treat it as an address into nyemor
These addresses are omhostly unique because Perl may reuse storage locations if its garballector hag
reclaimed an unreferenced reference.

Array References

You can also create references to arraysroay referencesThis is useful for several reasons:

e To pass and return arrays from functions without flattgnin
¢ To create multi-dimensional data structures
« To avoid unnecessary array copying

To hold anonymous data structures
To take a reference to a declared array, use the referencatope

my @cards =gw(KQJ1098765432A)
my $cards_ref =\ @cards;

Now contains a reference to the array. Any modifications madeutih will modify and
vice versa.

You may access the entire array as a whole with thegil, whether to flatten the array into a list or count themher of
elements it contains:

51

Modern Perl

my $card_count = @$cards_ref ;
my @card_copy = @$cards_ref ;

You may also access individual elements by using the denedarg arrow ():

my $first_card = $cards_ref->[0] ;
my $last_card = $cards_ref->[-1]
The arrow is necessary to distinguish between a scalar named and an array named from which you

wish to access a single element.

An alternate syntax is available, where you prepend anaitedar sigil to the array reference. It's shorter, if less
readable, to write

Slice an array through its reference with the curly-bragef@deence grouping syntax:

my @high_cards = @{ $cards_ref } [0 .. 2, -1];

In this case, youmayomit the curly braces, but the visual grouping they (and théegpace) provide only helps readability in
this case.

You may also create anonymous arrays in place without usamged arrays. Surround a list of values or expressions with
square brackets:

my $suits_ref = [qw(Monkeys Robots Dinosaurs Cheese)];

This array reference behaves the same as named array cefgremcept that the anonymous array bracbktayscreate a
new reference, while taking a reference to a named arrayyalveders to thesamearray with regard to scoping. That is to say:

my @meals = gw(waffles sandwiches pizza);
my $sunday_ref = \@meals;
my $monday_ref = \@meals;

push @meals, ice cream sundae;

... both and now contain a dessert, while:
my @meals = gw(waffles sandwiches pizza);

my $sunday_ref = [@meals];

my $monday_ref = [@meals];

push @meals, berry pie;

... heither nor contains a dessert. Within the square braces used to cheatabnymous array,
list context flattens the array.

Hash References

To create dash referenceuse the reference operator on a named hash:

my %colors = (
black => negro,

blue => azul,
gold => dorado,
red => rojo,

yellow => amarillo,
purple => morado ,

);

my $colors_ref = \%colors;

52

The Perl Language

Access the keys or values of the hash by prepending the nefergith the hash sigil:

my @english_colors = keys %$colors_ref
my @spanish_colors = values %$colors_ref

You may access individual values of the hash (to store, eletéteck the existence of, or retrieve) by using the derebéng
arrow:

sub translate_to_spanish

{
my $color = shift;
return $colors_ref->{$color}

As with array references, you may eschew the dereferencitogvefor a prepended scalar sigil:
, though the arrow is often much clearer.

You may also use hash slices by reference:

my @colors = qw(red blue green);
my @colores = @{ $colors_ref }{@colors}

Note the use of curly brackets to denote a hash indexing tiper@nd the use of the array sigil to denote a list operatiothe
reference.

You may create anonymous hashes in place with curly braces:

my $food_ref = {
birthday cake => la torta de cumpleafios,

candy => dulces,
cupcake => bizcochito,
ice cream => helado,

As with anonymous arrays, anonymous hashes create a newraoos hash on every execution.

A common novice typo is to assign an anonymous hash to a sthheah. This produces a warning about an odd
number of elements in the hash. Use parentheses for a narsie@ia curly brackets for an anonymous hash.

Function References

Perl 5 supportdirst-class functionsA function is a data type just as is an array or hash, at leastnwou usdunction
referencesThis feature enables many advanced features (see Clppagss 79). As with other data types, you may create a
function reference by using the reference operator on theera a function:

sub bake_cake { say Baking a wonderful cake! };

my $cake_ref = \& bake_cake;

Without thefunction sigil(), you will take a reference to the function's return valuevalues.

You may also create anonymous functions:
my $pie_ref = sub { say Making a delicious pie! }

53

Modern Perl

The use of the builtin withouta name compiles the function as normal, but does not instalttie current namespace. The
only way to access this function is through the reference.

You may invoke the function reference with the dereferegeirrow:

$cake_ref->();
$pie_ref->();

Think of the empty parentheses as denoting an invocatiafel@ncing operation in the same way that square braclditaie
an indexed lookup and curly brackets cause a hash lookupméypass arguments to the function within the parentheses:

$bake_something_ref->(cupcakes);

You may also use function references as methods with objgetsMoose, page 100); this is most useful when you've ajread
looked up the method:

my $clean = $robot_maid->can(cleanup);
$robot_maid->$clean($kitchen);

You may see an alternate invocation syntax for functionregfees which uses the function sigi) (nstead of the
dereferencing arrow. Avoid this syntax; it has implicagdar implicit argument passing.

Filehandle References

Filehandles can be references as well. When you use's (and 's) lexical filehandle form, you deal with filehandle
references. Stringifying this filehandle produces sonmgtlof the form

Internally, these filehandles are objects of the class . When you load that module, you can call methods on
filehandles:

use |0::Handle;
use autodie;

open my S$out_fh, >, output_file.txt;
$out_fh->say(Have some text!);

You may see old code which takes references to typeglobk,asic

my $th = do {
local *FH;
open FH, "> $file" or die "Cant write to $file: $\n";
\ *FH,

This idiom predates lexical filehandles, introduced ag p&rPerl 5.6.0 in March 2008. You may still use the reference
operator on typeglobs to take references to package-gfidladndles such as , , , or —but these
represent global data anyhow. For all other filehandlesfgpiexical filehandles.

Besides the benefit of using lexical scope instead of paelagglobal scope, lexical filehandles allow you to manage th
lifespan of filehandles. This is a nice feature of how Perldnages memory and scopes.

21 so you know how old that code is.

54

The Perl Language

Reference Counts

How does Perl know when it can safely release the memory fariale and when it needs to keep it around? How does Perl
know when it's safe to close the file opened in this inner scop

use autodie;
use |0::Handle;

sub show_off_scope
say file not open;

{
open my $fh, >, inner_scope.txt;
$fh->say(file open here);

}

say file closed here;

Perl 5 uses a memory management technique knowaf@gnce countingevery value in the program has an attached counter.
Perl increases this counter every time something take®eergfe to the value, whether implicitly or explicitly. Pddcreases
that counter every time a reference goes away. When the caeatehes zero, Perl can safely recycle that value.

Within the inner block in the example, there's one . (Multiple lines in the source code refer to it, but therefdyoone
referenceo it; itself.) is only in scope in the block and does not get assigned to engytiutside of the block, so when
the block ends, its reference count reaches zero. The negyai calls an implicit method on the filehandle,
which closes the file.

You don't have to understand the details of how all of this kgorYou only need to understand that your actions in taking
references and passing them around affect how Perl managasmyp—with one caveat (see Circular References, page 58).
References and Functions

When you use references as arguments to functions, documeningent carefully. Modifying the values of a referencenfr
within a function may surprise calling code, which expeaswodifications.

If you need to modify the contents of a reference withoutdffey the reference itself, copy its values to a new variable

my @new_array = @{ $array_ref };
my %new_hash = %({ $hash_ref };

This is only necessary in a few cases, but explicit clonings$iavoid nasty surprises for the calling code. If your refees
are more complex—if you use nested data structures—considarse of the core module and its (deep
cloning) function.

Nested Data Structures

Perl's aggregate data types—arrays and hashes—allow yoaréosstalars indexed by integers or string keys. Perl 5'seafees
(see References, page 50) allow you to access aggregatgmpdandirectly, through special scalars. Nested datetres in
Perl, such as an array of arrays or a hash of hashes, arelpdbsdugh the use of references.

Declaring Nested Data Structures

A simple declaration of an array of arrays might be:
my @famous_triplets = (
[qw(eenie miney moe)],

[qw(huey dewey louie)],
[qw(duck duck goose)],

55

Modern Perl

...and a simple declaration of a hash of hashes might be:

my %meals = (

breakfast => { entree => eggs, side => hash browns },
lunch => { entree => panini, side => apple },
dinner => { entree => steak, side => avocado salad },

Perl allows but does not require the trailing comma so asgte adding new elements to the list.

Accessing Nested Data Structures

Accessing elements in nested data structures uses Pé&il'emee syntax. The sigil denotes the amount of data tewetriand
the dereferencing arrow indicates that the value of oneqodf the data structure is a reference:

my $last_nephew = $famous_triplets[1]->[2];
my $breaky_side = $meals{breakfast}->{side};

In the case of a nested data structure, the only way to nesaattacture is through references, thus the arrow is sujoers.
This code is equivalent and clearer:

my $last_nephew = $famous_triplets[1][2];
my $breaky_side = $meals{breakfast}{side};

You can avoid the arrow in every case except invoking a fonateference stored in a nested data structure, where
the arrow invocation syntax is the clearest mechanism afcation.

Accessing components of nested data structures as if theyfikst-class arrays or hashes requires disambiguatimrkbi

my $nephew_count = @{ $famous_triplets[1] };
my $dinner_courses = keys %f{ $meals{dinner} };

Similarly, slicing a nested data structure requires addéi punctuation:

my ($entree, $side) = @{ $meals{breakfast} Hqw(entree sid e)}

The use of whitespace helps, but it does not entirely eliteitize noise of this construct. Sometimes using temporaighias
can clarify:

my $breakfast_ref = $meals{breakfast};
my ($entree, $side) = @$breakfast_ref{qw(entree side)};

, the data structures cookbook, gives copious exampleswfthaise the various types of data structures
available in Perl.

56

The Perl Language

Autovivification

Perl's expressivity extends to nested data structures. Wbemttempt to write to a component of a nested data strydaane
will create the path through the data structure to that pifeiteoes not exist:

my @aoaoaoa;
$a0aoaoa[0][0][0][0] = nested deeply;

After the second line of code, this array of arrays of arrdyari@ys contains an array reference in an array refererme amray
reference in an array reference. Each array referenceinermae element. Similarly, treating an undefined valud asnere
a hash reference in a nested data structure will createriethary hashes, keyed appropriately:

my %hohobh;
$hohoh{Robot}{Santa}{Claus} = mostly harmful ;

This behavior isautovivification and it's more often useful than itisn't. Its benefit is irdecing the initialization code of nested
data structures. Its drawback is in its inability to distirgh between the honest intent to create missing elementsied data
structures and typos.

The pragma on the CPAN (see Pragmas, page 121) lets you disablavification in a lexical scope for
specific types of operations; it's worth your time to coresithis in large projects, or projects with multiple devedop

You can also check for the existence of specific hash keyshdumber of elements in arrays before dereferenc-
ing each level of a complex data structure, but that can m®dedious, lengthy code which many programmers
prefer to avoid.

You may wonder at the contradiction between taking advantd@utovivification while enabling ures. The question
is one of balance. is it more convenient to catch errors wblidnge the behavior of your program at the expense of digpbli
those error checks for a few well-encapsulated symbolieresices? Is it more convenient to allow data structuresdw gr
rather than specifying their size and allowed keys?

The answer to the latter question depends on your specifiegr When initially developing, you can allow yourself the
freedom to experiment. When testing and deploying, you mayt waincrease strictness to prevent unwanted side effects.
Thanks to the lexical scoping of the and pragmas, you can enable and disable these behaviors as
necessary.

Debugging Nested Data Structures

The complexity of Perl 5's dereferencing syntax combinethwlie potential for confusion with multiple levels of redeces
can make debugging nested data structures dif cult. Twadgmutions exist for visualizing them.

The core module can stringify values of arbitrary complexity into Perl 5 eod

use Data::Dumper;

print Dumper($my_complex_structure);

This is useful for identifying what a data structure congsaiwhat you should access, and what you accessed instead.

can dump objects as well as function references (if you set to a true value).
While is a core module and prints Perl 5 code, it also produces serbotput. Some developers prefer the use
of the or modules for debugging. You have to learn a different formatinderstand their outputs, but their

outputs can be much clearer to read and to understand.

57

Modern Perl

Circular References

Perl 5's memory management system of reference countirggRegerence Counts, page 55) has one drawback apparent to
user code. Two references which end up pointing to each @wher a circular referencethat Perl cannot destroy on its own.
Consider a biological model, where each entity has two piat@md can have children:

my $alice = { mother => father => children =>] }
my $robert = { mother => , father => chidren => [] };
my $cianne = { mother => $alice, father => $robert, children = >0k

push @{ $alice->{children} }, $cianne;
push @{ $robert->{children} }, $cianne;

Because both and contain an array reference which contains , and because is a hash
reference which contains and , Perl can never decrease the reference count of any of these people to
zero. It doesn't recognize that these circular referengiss,@nd it can't manage the lifespan of these entities.

You must either break the reference count manually you(bgltlearing the children of and or the parents

of), or take advantage of a feature calleeak reference#\ weak reference is a reference which does not increase the
reference count of its referent. Weak references are éaitarough the core module . Export the

function and use it on a reference to prevent the referenaetdmm increasing:

use Scalar:Util weaken ;

my $alice = { mother => father => , children => [] };
my $robert = { mother => father => children =>] }
my $cianne = { mother => $alice, father => $robert, children = >0k

push @{ $alice->{children} }, $cianne;
push @{ $robert->{children} }, $cianne;

weaken($cianne->{mother});
weaken($cianne->{father});

With this accomplished, will retain references to and , but those references will not by themselves
prevent Perl's garbage collector from destroying thosa datuctures. You rarely have to use weak references if ysiguae
your data structures correctly, but they're useful in a fédwagions.

Alternatives to Nested Data Structures

While Perl is content to process data structures nested adyde®you can imagine, the human cost of understanding these
data structures as well as the relationship of various pieta to mention the syntax required to access variousgmsitican

be high. Beyond two or three levels of nesting, consider idremnodeling various components of your system with clagsds
objects (see Moose, page 100) will allow for a clearer reregion of your data.

Sometimes bundling data with behaviors appropriate todht can clarify code.

58

Operators

An accurate, if irreverent, description of Perl is an “operariented language”. The interaction of operators witkir operands
gives Perl its expressivity and power. Understanding Reqlires understanding its operators and how they behaveh&o
sake of this discussion, a working definition of a Rigpkratoris a series of one or more symbols used as part of the syntax of
a language. Each operator operates on zero or peeandsthis definition is circular, as an operand is a value on Wwtda
operator operates.

The most accurate definition of operators is “What's in " but even that leaves out some operators in

and includes builtins. Don't get too attached to a singlérlidn.

Operator Characteristics

Both and provide voluminous information about the behavior of Reoperators. Even
so, what theydon't explain is more important to their understanding. The daentation assumes you have a familiarity with
several concepts in language design. These concepts miag Boposing at first, but they're straightforward to undersl.

Every operator possesses several important charaateristiich govern its behavior: the number of operands on which
operates, its relationship to other operators, and itssyictpossibilities.

Precedence

The precedencef an operator helps determine when Perl should evaluateait iexpression. Evaluation order proceeds from
highest to lowest precedence. For example, because thedamae of multiplication is higher than the precedence ditimah,

evaluatesto ,not . You may force the evaluation of some operators before sthyeigrouping their subex-
pressions in parentheses; doesevaluate to , as the addition operation becomes a single unit which must
evaluate fully before multiplication can occur.

In case of a tie—where two operators have the same precedeticerfaxtors such as fixity (see Fixity, page 60) and associa
tivity (see Associativity, page 59) break the tie.

contains a table of precedence. Almost no one has this tadneamzed. The best way to manage precedence
is to keep your expressions simple. The second best way setparentheses to clarify precedence in complex expressfon
you find yourself drowning in a sea of parentheses, see tsierfile again.

Associativity

Theassociativityof an operator governs whether it evaluates from left totrigtright to left. Addition is left associative, such
that evaluates first, then adds to the result. Exponentiation is right associative, suet th
evaluates first, then raises to the 81st power.

Simplifying complex expressions and using parenthesegnoodstrate your intent is more important than memorizirsp-as
ciativity tables. Even so, memorizing the associativitytef mathematic operators is worthwhile.

Arity

Thearity of an operator is the number of operands on which it operAtesillary operator operates on zero operandsiary
operator operates on one operandifary operator operates on two operandsriAary operator operates on three operands.

59

Modern Perl

=

The core module can rewrite snippets of code to demonstrate exaothy Perl handles operatd
precedence and associativity; run on a snippet of code. (The flag adds extra group
ing parentheses which often clarify evaluation order.) B@ahat Perl's optimizer will simplify mathematica
operations as given as examples earlier in this sectiorvarsables instead, as in

A listary operator operates on a list of operands.

There's no single good rule for determining the arity of aem@or, other than the fact that most operate on two, margner
operands. The operator's documentation should make tgs.cl

For example, the arithmetic operators are binary operaanic are usually left associative. evaluates first;
addition and subtraction have the same precedence, blrethefyassociative and binary, so the proper evaluatiaieoapplies
the leftmost operator | to the leftmost two operands é&nd) with the leftmost operator {, then applies the rightmost operator
() to the result of the first operation and the rightmost opdr@).

One common source of confusion for Perl novices is the iotena of listary operators (especially function calls) witested
expressions. Using grouping parentheses to clarify yaeninyet watch out for confusion in code such as:

probably buggy code
say (1 +2+3) =* 4

...as Perl 5 happily interprets the parentheses as pastdicc (see Fixity, page 60) operators denoting the argumémt
, hot circumfix parentheses grouping an expression to ahangcedence. In other words, the code prints the valaed
evaluates to the return value of multiplied by .

Fixity
An operator'sfixity is its position relative to its operands:

Infix operators appear between their operands. Most matheinapiesators are infix operators, such as the multiplication
operator in

Prefix operators appear before their operators postfix operators appear after. These operators tend to be unatyasu
mathematic negation (), boolean negation (), and postfix increment ().

Circumfix operators surround their operands. Examples include theyamous hash constructor () and quoting op-
erators ().
Postcircumfixoperators follow certain operands and surround others,jitashash or array element access (
and).
Operator Types

Perl's pervasive contexts—especially value contexts (sgaeMic, String, and Boolean Context, page 5)—extend to thawbe

ior of its operators. Perl operators provide value contextieir operands. Choosing the most appropriate operat@r given
situation requires you to understand what type of value ymeet to receive as well as the type of values on which you wish
to operate.

Numeric Operators

The numeric operators impose numeric contexts on theiramgis: They consist of the standard arithmetic operatolls asic
addition (), subtraction (), multiplication (), division (), exponentiation (), modulo (), their in-place variants (, ,
. ,and), and auto-decrement (), whether postfix or prefix.

While the auto-increment operator may seem like a numericabpe it has special string behavior (see Special Opesgpage
61).

60

Operators

Several comparison operators impose numeric contextstiearoperands. These are numeric equality)(numeric inequal-
ity (), greater than (), less than (), greater than or equal to (), less than or equal to (), and the sort comparison operator

¢)

String Operators

The string operators impose string contexts on their ogksrafihey consist of the positive and negative regular espes
binding operators (and , respectively), and the concatenation operatdr (

Several comparison operators impose string contexts uy@indperands. These are string equality)(string inequality (),
greater than (), less than (), greater than or equal to (), less than or equal to (), and the string sort comparison operator

¢)

Logical Operators

The logical operators treat their operands in a boolearezbrithe and operators test that both expressions are logically
true, whilethe and operators test that either expression is true. All four iafi® bperators. All four exhibishort-circuiting
behavior (see Short Circuiting, page 25).

The defined-or operator, , tests thedefinednes®f its operand. Unlike which tests the truth value of its operand,
evaluates to a true value if its operand evaluates to a nareerd or the empty string. This is especially useful forisgtt
default parameter values:

sub name_pet

{
my $name = shift // Fluffy;

The ternary conditional operator () takes three operands. It evaluates the first in booleatexband evaluates to the second
if the first is true and the third otherwise:

my $truthiness = $value ? true : false;

The and operators return the logical opposite of the boolean valukeir operands. has a lower precedence than
These are prefix operators.

The operator is an infix operator which evaluates to the exetssir of its operands.

Bitwise Operators

The bitwise operators treat their operands numericallyatiit level. These are uncommon in most Perl 5 programs. They
consist of left shift (), right shift (), bitwise and (), bitwise or (), and bitwise xor (), as well as their in-place variants
« ., , ,and).

Special Operators

The auto-increment operator has a special case. If anytisisgver used a variable in a numeric context (see CachediQugr
page 48), it increments the numeric value of that varialblnd variable is obviously a string (and has never been atedlin
a numeric context), the string value increments with a ¢augh that incrementsto, to ,and to

my $num = 1;

my $str = a;

$num++;

$str++;

is($num, 2, numeric autoincrement should stay numeric);

is($str, b, string autoincrement should stay string);

no warnings numeric ;

61

Modern Perl

$num += $str;

$str++;
is($num, 2, adding $str to $num should add numeric value of $ str);
is($str, 1, ... but $str should now autoincrement its numer ic part);

The repetition operator | is an infix operator. In list context, its behavior chanfased on its first operand. When given a list,
it evaluates to that list repeated the number of times sigéldify its second operand. When given a scalar, it producesg st
consisting of the string value of its first operand concated to itself the number of times specified by its secondan® In
scalar context, the operator always produces a concatesigiieg repeated appropriately.

For example:

my @scheherazade = (nights) x 1001;

my $calendar = nights x 1001;

is(@scheherazade, 1001, list repeated);

is(length $calendar, 1001 * length nights, word repeated);

my @schenolist = nights x 1001;

my $calscalar = (nights) x 1001;

is(@schenolist, 1, no lIvalue list
is(length $calscalar, 1001 * length nights, word still repeated);

Therangeoperator () is an infix operator which produces a list of items in lishext:

my @cards = (2 .. 10, J, Q, K, A);

It can produce simple, incrementing ranges (whether imgegieautoincrementing strings), but it cannot intuit patseor more
complex ranges.

In boolean context, the range operator becomeslifhviop operator. This operator returns a false value if its leftrapd is
false, then it returns a true value while its right operartdis. Thus you could quote the body of a pedantically forethémail
with:

while (/Hello, $user/ .. /Sincerely,/)
{

}

say "> $_";

The commaoperator () is an infix operator. In scalar context it evaluates it$ tgferand then returns the value produced by
evaluating its right operand. In list context, it evaludtesh operands in left-to-right order.

The fat comma operator () behaves the same way, except that it automatically quotebareword used as its left operand
(see Hashes, page 40).

62

Functions

A function(or subrouting in Perl is a discrete, encapsulated unit of behavior. It orapay not have a name. It may or may not
consume incoming information. It may or may not produce oing information. It represents a type of control flow, wler
the execution of the program proceeds to another point isdliece code.

Functions are a prime mechanism for abstraction, encapmsuland re-use in Perl 5; many other mechanisms build ordtee
of the function.

Declaring Functions

Use the builtin to declare a function:

sub greet_me { ..}

Now is available for invocation anywhere else within the progrgrovided that the symbol—the function's
name—is visible.

You do not have talefinea function at the point you declare it. You may us®avard declarationto tell Perl that you intend
for the function to exist, then delay its definition:

sub greet_sun;

You do not have to declare Perl 5 functions before you use tbgoept in the special case where they motiyv
the parser parses them (see Attributes, page 83).

Invoking Functions

To invoke a function, mention its name and pass an optiosiabfiarguments:

greet_me(Jack, Brad);
greet_me(Snowy);
greet_me();

You canoftenomit parameter-grouping parentheses if your program ronectly with the pragma en-
abled, but they provide clarity to the parser and, more irtgodly, human readers.

You can, of course, pass multigigesof arguments to a function:

greet_me($name);
greet_me(@authors);
greet_me(%editors);

...though Perl 5's default parameter handling sometimgxses novices.

63

Modern Perl

Function Parameters

Inside the function, all parameters exist in a single array,lf ~ corresponds to the English woitj corresponds to the
word them Perlflattensall incoming parameters into a single list. The functiorlitgither must unpack all parameters into
any variables it wishes to use or operate ordirectly:

sub greet_one

{
my ($name) = @_;
say "Hello, $name!";

}
sub greet_all

say "Hello, $ 1" for @_ ;

behaves as does any other array in Perl. You may refer toithdilelements by index:

sub greet_one_indexed

{
my $name = $_[0] ;
say "Hello, $name!";

or, less clear
say "Hello, $_[0]';

You may also , , , , , and slice . Inside a function, the and operators operate on
implicitly in the same way that they operate on outside of any function:

sub greet_one_shift

{
my $name = shift
say "Hello, $name!";

While writing may seem clearer initially, taking advantage of the impbpierand to is idiomatic
in Perl 5.
Take care that assigning a scalar parameter fromequires , indexed access to , or Ilvalue list context parentheses.

Otherwise, Perl 5 will happily evaluate in scalar context for you and assign the number of paramptssed:

sub bad_greet_one

{
my $name = @; # buggy
say "Hello, $name; youre looking quite numeric today!"

List assignment of multiple parameters is often clearen thaltiple lines of . Compare:

sub calculate_value
multiple shifts
my $left_value = shift;

my $operation = shift;
my $right_value = shift;

.. to:

64

Functions

sub calculate_value

my ($left_value, $operation, $right_value) = @_;

Occasionally it's necessary to extract a few parametera froand pass the rest to another function:

sub delegated_method

{
my $self = shift ;
say Calling delegated_method()

$self->delegate->delegated_method(@_);

The dominant practice seems to be to use only when your function must access a single parameter ahddsignment
when accessing multiple parameters.

See the , , and modules on the CPAN for
declarative parameter handling.

Flattening

The flattening of parameters into happens on the caller side. Passing a hash as an argumemtgsadist of key/value pairs:

sub show_pets

{
my %pets = @_;

while (my ($name, $type) = each %pets)
{
say "$name is a $type";

}

my %pet_names_and_types = (
Lucky => dog,
Rodney => dog,
Tuxedo => cat,
Petunia => cat,

)

show_pets(%pet_names_and_types);

The function works because the hash flattens into a list. The order of the pairs within
that flattened list will vary, but pairs will always appearthat list with the key firstimmediately followed by the val The hash
assignment inside the function works essentially as the more explicit assignment to

does.

This is often useful, but you must be clear about your inte#iif you pass some arguments as scalars and others asefthtte
lists. If you wish to make a function, where one parameter is the type of pet to display,must pass
that type as théirst parameter (or use to remove it from the end of):

sub show_pets_by_type
my ($type, %pets) = @_
while (my ($name, $species) = each %pets)

next unless $species eq $type;
say "$name is a $species"”;

65

Modern Perl

my %pet_names_and_types = (
Lucky => dog,
Rodney => dog,
Tuxedo => cat,
Petunia => cat,

);

show_pets_by type(dog, %pet_names_and_types);
show_pets_by_type(cat, %pet_names_and_types);
show_pets_by_type(moose, %pet _names_and_types);

Slurping
As with any Ivalue assignment to an aggregate, assigning to within the functionslurpsall of the remaining values from
. If the parameter came at the end of, Perl would attempt to assign an odd number of elements thdsh and

would produce a warning. Yocouldwork around that:

sub show_pets_by type
my $type = pop;
my %pets = @_;

}

...atthe expense of some clarity. The same principle applieen assigning to an array as a parameter, of course. ldsemeés
(see References, page 50) to avoid flattening and slurpirenyassing aggregate parameters.

Aliasing

One useful feature of can surprise the unwary: it contains aliases to the passpdrameters, until you unpack into its
own variables. This behavior is easiest to demonstrateamtbxample:

sub modify_name

$_[0] = reverse $_[0];

my $name = Orange;
modify_name($name);
say $name;

prints

If you modify an element of directly, you will modify the original parameter directBe cautious.

Functions and Namespaces

Every function lives in a namespace. Functions in an undeg¢laamespace—that is, functions not declared after ancéxpli
statement—Ilive in the namespace. You may specify a function's namespace outkttle ourrent package
at the point of declaration:

sub Extensions::Math:: add {

}

Any prefix on the function's name which follows the packagamning format creates the function and inserts the functitm i
the appropriate namespace, but not the current namespecaus® Perl 5 packages are open for modification at any, yoint
may do this even if the namespace does not yet exist, or if goa hlready declared functions in that namespace.

You may only declare one function of the same name per naroesgatherwise Perl 5 will warn you about subroutine
redefinition. If you're certain you want teeplacean existing function, disable this warning with

You may call functions in other namespaces by using thely-yialified names:

66

Functions

package main;

Extensions::Math::add($scalar, $vector);

Functions in namespaces afigible outside of those namespaces in the sense that you can réfiemtadirectly, but they are
only callable by their short names from within the namespace in which threydaclared—unless you have somehow made
them available to the current namespace through the pegesimporting and exporting (see Exporting, page 136).

Importing
When loading a module with the builtin (see Modules, page 134), Perl automatically callaethod named
on the provided package name. Modules with proceduralfades can provide their own which makes some or

all defined symbols available in the calling package's ngpaee. Any arguments after the name of the module in the
statement get passed to the module's method. Thus:

use strict;

...loads thestrict.pmmodule and calls with no arguments, while:

use strict refs;
use strict qw(subs vars);

... loads thestrict.pmmodule, calls , then calls
You may call a module's method directly. The previous code example is equivalent to
BEGIN
{
require strict;

strict->import(refs);
strict->import(qw(subs vars));

Be aware that the builtin adds an implicit block around these statements so that the call happensmme-
diately after the parser has compiled the entire statement. Thigesnshat any imported symbols are visible when compiling
the rest of the program. Otherwise, any functions imporntethfother modules but not declared in the current file woatzkl
like undeclared barewords and would complain.

Reporting Errors

Within a function, you can get information about the conteithe call with the operator. If passed no arguments, it
returns a three element list containing the name of thengpfliackage, the name of the file containing the call, andittee |
number of the package on which the call occurred:

package main;
main();

sub main

{
}

sub show_call_information

{

show_call_information();

my ($package, $file, $line) = caller();
say "Called from $package in $file at $line”;

67

Modern Perl

You may pass a single, optional integer argument to . If provided, Perl will look back through the caller of thellea
of the caller that many times and provide information abbat particular call. In other words, if

used , it would receive information about the call from . Ifitused , it would receive information
about the call from the start of the program.

While providing this optional parameter lets you inspectdakers of callers, it also provides more return valuedpigiog the
name of the function and the context of the call:

sub show_call_information

{
my ($package, $file, $line , $func) = caller(0);
say "Called $func from $package in $file at $line";

The standard module uses this technique to great effect for reportingrerand throwing warnings in functions; its
throws an exception reported from the file and line numbetsoaller. When used in place of in library code,
can throw an exception due to incorrect usage from the péinse. 's function reports a warning from

the file and line number of its caller (see Producing Warsjimage 127).

This behavior is most useful when validating parametersrecgnditions of a function, when you want to indicate that th
calling code is wrong somehow:

use Carp croak;

sub add_two_numbers

{

croak add_two_numbers() takes two and only two arguments
unless @_ == 2;

Validating Arguments

Defensive programming often benefits from checking typeb\alues of arguments for appropriateness before furttesnue
tion. By default, Perl 5 provides few built-in mechanisms @wing so. To check that theumberof parameters passed to a
function is correct, evaluate in scalar context:

sub add_numbers
{
croak "Expected two numbers, but received: " . @
unless @_ == 2;

Type checking is more dif cult, because of Perl's operatoiented type conversions (see Context, page 3). In caseewbu
need more strictness, consider the CPAN module

Advanced Functions

Functions may seem simple, but you can do much, much moretheéth.

Context Awareness
Perl 5's builtins know whether you've invoked them in voidagar, or list context. So too can your functions know thalfing
contexts. The misnaméd builtin returns to signify void context, a false value to signify scalar @it and

a true value to signify list context.

225ee to verify.

68

Functions

sub context_sensitive

{

my $context = wantarray();

return qw(Called in list context) if $context;
say Called in void context unless defined $context;
return Called in scalar context unless $context;

}

context_sensitive();
say my $scalar = context_sensitive();
say context_sensitive();

This can be useful for functions which might produce expengtturn values to avoid doing so in void context. Some iditien
functions return a list in list context and an array refeeeimcscalar context (or the first element of the list). Eventgere's no
single best recommendation for the use or avoidance of ; sometimes it's clearer to write separate functions which
clearly indicate their expected uses and return values.

With that said, Robin Houston's and Damian Conway's distributions from the CPAN
offer many possibilities for writing powerful and usablédrfaces.

Recursion

Every call to a function in Perl creates a neall frame This is an internal data structure which represents the fdathe call
itself: incoming parameters, the point to which to retumd all of the other call frames up to the current point. It alaptures
the lexical environment of the specific and current invamabf the function. This means that a function canur; it can call
itself.

Recursion is a deceptively simple concept, but it can seemtafey if you haven't encountered it before. Suppose youtw@n
find an element in a sorted array. Yoould iterate through every element of the array individuallgKimg for the target, but
on average, you'll have to examine half of the elements oftinay.

Another approach is to halve the array, pick the elementeattitlpoint, compare, then repeated with either the loweppeu
half. You can write this in a loop yourself or you could let Reanage all of the state and tracking necessary with a rigeurs
function something like:

use Test:More tests => 8;

my @elements = (1, 5, 6, 19, 48, 77, 997, 1025, 7777, 8192, 9999)

ok elem_exists(1, @elements), found first element in arra v,

ok elem_exists(9999, @elements), found last element in ar ray ;

ok ! elem_exists(998, @elements), did not find element not in array ;
ok ! elem_exists(-1, @elements), did not find element not i n array;
ok ! elem_exists(10000, @elements), did not find element n ot in array;

ok elem_exists(77, @elements), found midpoint element;

ok elem_exists(48, @elements), found end of lower half ele ment ;

ok elem_exists(997, @elements), found start of upper half element ;

sub elem_exists

{
my ($item, @array) = @_;

break recursion if there are no elements to search
return unless @array;

bias down, if there are an odd number of elements
my $midpoint = int((@array / 2) - 0.5);
my $miditem = $array[$midpoint];

return true if the current element is the target
return 1 if $item == $miditem;

return false if the current element is the only element
return if @array == 1,

69

Modern Perl

split the array down and recurse
return elem_exists ($item, @array[0 .. $midpoint])
if $item < $miditem;

split the array up and recurse
return elem_exists ($item, @array[$midpoint + 1 .. $#array]);

This isn't necessarily the best algorithm for searchingréestlist, but it demonstrates recursion. Again, yamwrite this code
in a procedural way, but some algorithms are much clearenwiniten recursively.

Lexicals

Every new invocation of a function creates its oiwstanceof a lexical scope. In the case of the recursive example, éanmmgh
the declaration of creates a single scope for the lexicals , ,and , every
call to , even recursively, has separate storage for the valueosé tlexical variables. You can demonstrate

that by adding debugging code to the function:

use Carp cluck;

sub elem_exists

{ my ($item, @array) = @_;
cluck "[$item] (@array)";

other code follows

The output demonstrates that not only can call itself safely, but the lexical variables do not inteefgvith each
other.

Tail Calls

Onedrawbackof recursion is that you must get your return conditions @ctrror else your function will call itself an infinite
number of times. This is why the function has several statements.

Perl offers a helpful warning when it detects what might beasay recursion: . The limit

is 100 recursive calls, which can be too few in certain cirstances but too many in others. Disable this warning with
in the scope of the recursive call.

Because each call to a function requires a new call frame efisaw space for the call to store its own lexical values, lgigh
recursive code can use more memory than iterative code.tAréeaalledtail call eliminationcan help.

Tail call elimination may be most obvious when writing resive code, but it can be useful in any case of a tail
call. Many programming language implementations suppddraatic tail call elimination.

A tail call is a call to a function which directly returns that functismésults. The lines:

split the array down and recurse
return elem_exists($item, @array[0 .. $midpoint])
if $item < $miditem;

split the array up and recurse
return elem_exists($item, @array[$midpoint + 1 .. $#array 1)

...which return the results of the recursive calls directly, are candidates for tail call eliminatiorhig elimi-
nation avoids returning to the current call and then retgno the parent call. Instead, it returns to the parent d¢adttly.

70

Functions

Perl 5 supports manual tail call elimination, but Yuval Kagmis is worth exploring if you find yourself
with highly recursive code or code that could benefit froihdall elimination. is appropriate for tail calls
of non-recursive code:

use Sub:Call:Tail;

sub log_and_dispatch

my ($dispatcher, $request) = @_;
warn "Dispatching with $dispatcher\n”;

return dispatch($dispatcher, $request);
}

In this example, you can replace the with the new keyword with no functional changes (yet more clarity and
improved performance):

tail dispatch($dispatcher, $request);

If you really musteliminate tail calls, use a special form of the builtin. Unlike the form which can often lead to spaghetti
code, the function form replaces the current function call with a ¢alanother function. You may use a function by name
or by reference. You must always setyourself manually, if you want to pass different arguments:

split the array down and recurse
if ($item < $miditem)

@_ = ($item, @array[0 .. $midpoint]);
goto &elem_exists;

split the array up and recurse
else

@_ = ($item, @array[$midpoint + 1 .. $#array]);
goto &elem_exists;

}

The comparative cleanliness of the CPAN versions is obvious

Pitfalls and Misfeatures

Not all features of Perl 5 functions are always helpful. Intigalar, prototypes (see Prototypes, page 159) rarely lolat wou
mean. They have their uses, but you can avoid them outsidéeof eases.

Perl 5 still supports old-style invocations of functionasried over from older versions of Perl. While you may now ko
Perl functions by name, previous versions of Perl requit@a tp invoke them with a leading ampersandl ¢haracter. Perl 1
required you to use the builtin:

outdated style; avoid
my $result = &calculate_result(52);

Perl 1 style
my $result = do calculate_result(42);

crazy mishmash; really truly avoid
my $result = do &calculate_result(42);

While the vestigial syntax is visual clutter, the leading @ngand form has other surprising behaviors. First, it désatrototype
checking (as if that often mattered). Second, if you do nesgaguments explicitly, implicitly passes the contents of
unmodified. Both can lead to surprising behavior.

A final pitfall comes from leaving the parentheses off of ¢tion calls. The Perl 5 parser uses several heuristics tves
ambiguity of barewords and the number of parameters passadunction, but occasionally those heuristics guess wrong
While it's often wise to remove extraneous parentheses, eoehe readability of these two lines of code:

71

Modern Perl

ok(elem_exists(1, @elements), found first element in arr ay);

warning; contains a subtle bug
ok elem_exists 1, @elements, found first element in array

The subtle bug in the second form is that the call to will gobble up the test description intended as the
second argumentto . Because uses a slurpy second parameter, this may go unnoticed @ntipPduces
warnings about comparing a non-number (the test desamiptibich it cannot convert into a number) with the elementim t
array.

This is admittedly an extreme case, but it is a case whereepnage of parentheses can clarify code and make subtle bugs
obvious to the reader.

Scope

Scopdn Perl refers to the lifespan and visibility of symbols. Bxt@ing with a name in Perl (a variable, a function) has a scop
Scoping helps to enforaencapsulatior—keeping related concepts together and preventing theml&aking out.

Lexical Scope

The most common form of scoping in modern Perl is lexical sogppl he Perl compiler resolves this scope during comjoirati
This scope is visible as yaead a program. A block delimited by curly braces creates a newecoahether a bare block, the
block of a loop construct, the block of a declaration, an block, or any other non-quoting block:

outer lexical scope

{
package My::Class;

inner lexical scope
sub awesome_method

{
further inner lexical scope
do {
} while (@_);

sibling inner lexical scope
for (@_)
{

}

Lexical scope governs the visibility of variables declangth ; these ardexical variables. A lexical variable declared in one
scope is visible in that scope and any scopes nested withiatits invisible to sibling or outer scopes. Thus, in theezod

outer lexical scope

{ package My::Class;
my $outer;
{sub awesome_method

my $inner;

do {
my $do_scope;

} while (@_);

sibling inner lexical scope

for (@_)
{

my $for_scope;

72

Functions

. is visible in all four scopes. is visible in the method, the block, and the loop. is visible
only inthe block and within the loop.

Declaring a lexical in an inner scope with the same name as@alén an outer scope hides, shadowsthe outer lexical:

my $name = Jacob;

{

my $name = Edward;
say $name;

}

say $name;

This program prints and then 23, Even though redeclaring a lexical variable with the sanmaenand type in a
single lexical scope produces a warning message, shad@anligigcal in a nested scope does not; this is a feature ofdexic
shadowing.

Lexical shadowing can happen by accident, but if you limét$lcope of variables and limit the nesting of scopes—
as is good design anyhow—you lessen your risk.

Lexical declaration has its subtleties. For example, eclxrariable used as the iterator variable of a loop has a scope
within the loop block. It is not visible outside the block:

my $cat = Bradley;
for my $cat (qw(Jack Daisy Petunia Tuxedo))

say "lterator cat is $cat";

}

say "Static cat is $cat";

Similarly, the construct createslaxical topic(akin to) within its block:

$_ = outside;
given (inner)
say;

$_ = whomped inner;

}

say;

...despite assignment to inside the block. You may explicitly lexicalize the topicyrself, though this is more useful when
considering dynamic scope.

Finally, lexical scoping facilitates closures (see Clesyipage 79). Beware creating closures accidentally.

23Family members and not vampires, if you must know.

73

Modern Perl

Our Scope

Within a given scope, you may declare an alias to a packagablarwith the builtin. Like enforces lexical
scoping—of the alias. The fully-qualified name is availagerywhere, but the lexical alias is visible only withinstsope.

The bestuse of s for variables you absolutelpusthave, such as

Dynamic Scope

Dynamic scope resembles lexical scope in its visibilityesylbut instead of looking outward in compile-time scopesklip
happens along the current calling context. Consider thmpia

our $scope;

sub inner

{
}

sub main

{

say $scope;

say $scope;
local $scope = main() scope;
middle();

}

sub middle
{

say $scope;
inner();

}

$scope = outer scope;
main();
say $scope;

The program begins by declaring an variable, , as well as three functions. It ends by assigning to and
calling

Within , the program prints 's current value, , then izes the variable. This changes the
visibility of the symbol within the current lexical scos well asin any functions called from the current lexical scope. Thus
contains within the body of both and . After returns—at the point of
exiting the block containing the ization of , Perl restores the original value of the variable. The final prints
once again.

While the variable isisible within all scopes, thealue of the variable changes depending on ization and assignment.
This feature can be tricky and subtle, but it is especialgfuifor changing the values of magic variables.

This difference in visibility between package variabled &xical variables is apparent in the different storagelmaisms of
these variables within Perl 5 itself. Every scope which aot#t lexical variables has a special data structure callexical pad

or lexpadwhich can store the values for its enclosed lexical varatiery time control flow enters one of these scopes, Perl
creates another lexpad for the values of those lexical bi@sefor that particular call. (This is how a function canl @aklf and

not clobber the values of existing variables.)

Package variables have a storage mechanism called syrbles.tBach package has a single symbol table, and everygmcka
variable has an entry in this table. You can inspect and mddi§ symbol table from Perl; this is how importing works€se
Importing, page 67). This is also why you may only ize global and package global variables and never lexicébies.

It's common to ize several magic variables. For example, the input record separator, governs how much data a
operation will read from a filehandle. , the system error variable, contains the error number ofrtbst recent
system call. , the Perl error variable, contains any error from the most recent operation. , the autoflush variable,

governs whether Perl will flush the currently ed filehandle after every write operation.

74

Functions

These are all special global variables; izing them in the narrowest possible scope will avoid theoacat a distance
problem of modifying global variables used other placesaancode.

State Scope

A final type of scope is new as of Perl 5.10. This is the scopthef builtin. State scope resembles lexical scope in that
it declares a lexical variable, but the value of that vagaists initializecbnce and then persists:

sub counter

state $count = 1;
return $count++;

}

say counter();
say counter();
say counter();

On the first call to state, has never been initialized, so Perl executes the assignfieaprogram prints, , and . If
you change to ,the program will print , ,and .

You may also use an incoming parameter to set the initialevafuhe variable:

sub counter

{
state $count = shift;
return $count++;

say counter(2);
say counter(4);
say counter(6);

Even though a simple reading of the code may suggest thatutipeitoshould be, , and , the output is actually, , and
. The first call to the sub sets the variable. Subsequent calls will not change its value. Thisdvior is as
intended and documented, though its implementation cahtéesurprising results:

sub counter

{

state $count = shift;
say Second arg is: , shift;
return $count++;

say counter(2, two);
say counter(4, four);
say counter(6, six);

The counter for this program prints , and as expected, but the values of the intended second argutnehts
callsare , ,and —not because the integers are the second arguments passeelcduse the of the first argument
only happens in the first call to

can be useful for establishing a default value or preparicache, but be sure to understand its initialization beaf/io
you use it.

Anonymous Functions

An anonymous functiois a function without a name. It behaves like a named funetigau can invoke it, pass arguments to it,
return values from it, copy references to it—it can do anyglamamed function can do. The difference is that it has no name
You always deal with anonymous functions by reference (seetion References, page 53).

75

Modern Perl

Declaring Anonymous Functions

You may never declare an anonymous function on its own; yostmonstruct it and assign it to a variable, invoke it imme-
diately, or pass it as an argument to a function, either eitiylior implicitly. Explicit creation uses the builtin with no
name:

my $anon_sub = sub { ... };

A common Perl 5 idiom known asdispatch tablauses hashes to associate input with behavior:

my %dispatch =
(

plus => sub { $_[0] + $ [1] },
minus => sub { $_[0] - $_[1] },
times => sub { $_[0] * $ [1] }
goesinto => sub { $_[0] / $_[1] },
raisedto => sub { $_[0] = $ [1] },

);

sub dispatch

{
my ($left, $op, $right) = @_;

die "Unknown operation!"
unless exists $dispatch{ $op };

return $dispatch{ $op }->($left, $right);

The function takes arguments of the form and returns the result of evaluating the operation.

You may use anonymous functions in place of function refegenTo Perl, they're equivalent. Nothingcessitatethe use of
anonymous functions, but for functions this short, thelitile drawback to writing them this way.

You may rewrite as:

my %dispatch =

(
plus => \&add_two_numbers,
minus => \&subtract_two_numbers,
... and so on

)i
sub add_two_numbers {$.[0] + $_[1]}

sub subtract_two_numbers { $_[0] - $_[1] }

... but the decision to do so depends more on maintainabiitygerns, safety, and your team's coding style than anyulzageg
feature.

A benefit of indirection through the dispatch table is th@rovides some protection against calling functions with-
out verifying that it's safe to call those functions. If yadispatch function blindly assumed that the string given as
the name of the operator corresponded directly to the naméumiction to call, a malicious user could conceivably
call any function in any other namespace by crafting an dperzame of

You may also create anonymous functions on the spot wheimgabs&m as function parameters:
sub invoke_anon_function

my $func = shift;
return $func->(@_);

76

Functions

sub named_func

{
}

invoke_anon_function(\&named_func);
invoke_anon_function(sub { say | am an anonymous function)

say | am a named function!;

Anonymous Function Names

There is one instance in which you can identify the diffeeebetween a reference to a named function and an anonymous
function—anonymous functions do not (hormally) have narbg may sound subtle and silly and obvious, but introspecti
shows the difference:

package ShowcCaller;
use Modern::Perl;

sub show_caller

{
my ($package, $filename, $line, $sub) = caller(1);
say "Called from $sub in $package at $filename : $line";

}

sub main

{
my $anon_sub = sub { show_caller() };
show_caller();
$anon_sub->();

}

main();

The result may be surprising:

Called from ShowCaller: main in ShowCaller at anoncaller.pl : 20

Called from ShowCaller:: __ANON__in ShowCaller at anoncaller.pl : 17

The in the second line of output demonstrates that the anonyffumgtion has no name that Perl can identify. Even
though this can be dif cult to debug, there are ways aroutisldanonymity.

The CPAN module provides a handful of functions useful to inspect the nanfiésractions, given references
to them. is the most immediately obvious:

use Sub:ldentify sub_name;

sub main

{
say sub_name(\&main);
say sub_name(sub {});

}

main();

As you might imagine, the lack of identifying informationroplicates debugging anonymous functions. The CPAN module
can help. Its function allows you to attach names to anonymous functions:

use Sub::Name;
use Sub::ldentify sub_name;

my $anon = sub {};
say sub_name($anon);

my $named = subname(pseudo-anonymous, $anon);
say sub_name($named);
say sub_name($anon);

say sub_name(sub {});

7

Modern Perl

This program produces:

__ANON__
pseudo-anonymous
pseudo-anonymous

__ANON__
Be aware that both references refer to the same underlyioigyamous function. Calling on and returning
into modifies that function, so any other reference to this fiomctvill see the same name

Implicit Anonymous Functions

All of these anonymous function declarations have beeni@xgPerl 5 allows implicit anonymous functions througle thse
of prototypes (see Prototypes, page 159). Though thisreatusts nominally to enable programmers to write their syumtax
such as that for and , an interesting example is the usedaflayedfunctions that don't look like functions. Consider
the CPAN module :

use Test:More tests => 2;
use Test::Exception;

throws_ok { die "I croak!" }
gr/l croak/, die() should throw an exception ;

lives ok {1+ 1}
simple addition should not;

Both and take an anonymous function as their first arguments. Thie ¢® equivalent to:

throws_ok(sub { die "I croak!" },
qr/l croak/, die() should throw an exception);

lives_ok(sub { 1 + 11}
simple addition should not);

... butis slightly easier to read.

Note thelack of a comma following the final curly brace of the implicit amenous function in the implicit version.
This is occasionally a confusing wart on otherwise helpjultax, courtesy of a quirk of the Perl 5 parser.

The implementation of both functions does not care whichlmaeism you use to pass function references. You can passiname
functions by reference as well:

sub croak { die | croak! }
sub add {1+1}

throws_ok \&croak ,
qr/l croak/, die() should throw an exception ;

lives_ok \&add ,
simple addition should not;

... but you maynot pass them as scalar references:

sub croak { die | croak! }
sub add {1+ 1}

my $croak = \&croak;
my $add = \&add;

78

Functions

throws_ok $croak ,
gr/l croak/, die() should throw an exception ;

lives_ok $add,
simple addition should not;

... because the prototype changes the way the Perl 5 pategrigts this code. It cannot determine with 100% claritat
and will contain when it evaluates the or calls, so it produces an error:

Type of arg 1 to Test:Exception::ithrows_ok must be block or sub {}
(not private variable) at testex.pl line 13,
near "die() should throw an exception ;"

This feature is occasionally useful despite its drawbatks.syntactic clarity available by promoting bare blockatonymous
functions can be helpful, but use it sparingly and docuntemP| with care.

Closures

You've seen how functions work (see Declaring Functiongepd3). You understand how scope works (see Scope, page 72).
You know that every time control flow enters a function, thatction gets a new environment representing that invonéti
lexical scope. You can work with function references (seteRRaces, page 50) and anonymous functions (see Anonymous
Functions, page 75).

You know everything you need to know to understand closures.

Mark Jason Dominus'$ligher Order Perlis the canonical reference on first-class functions, glesuand the
amazing things you can do with them. You can read it online at

Creating Closures

A closureis a function that closes over an outer lexical environméunitve probably already created and used closures without
realizing it:

{
package Invisible::Closure;
my $filename = shift @ARGV;

sub get_filename

{
}

return $filename;

The behavior of this code is unsurprising. You may not hat&ead anything speciaDf coursethe function
can see the lexical. That's how scope works! Yet closures can also ctbggtransientlexical environments.

Suppose you want to iterate over a list of items without mamgatihe iterator yourself. You can create a function whidmes
a function that, when invoked, will return the next item i fkeration:

sub make_iterator

{
my @items = @_;
my $count = 0O;

return sub

{
return if $count == @items;
return $items[$count++ |;

79

Modern Perl

}

my $cousins = make_iterator(qw(Rick Alex Kaycee Eric Corey);

say $cousins->() for 1 .. 5;

Even though has returned, the anonymous function still refers to theédxariables and
Their values persist (see Reference Counts, page 55). Tdmgymous function, stored in , has closed over these
values in the specific lexical environment of the specifiedcation of

It's easy to demonstrate that the lexical environment igpahdent between calls to

my $cousins = make_iterator(qw(Rick Alex Kaycee Eric Corey);
my $aunts = make_iterator(qw(Carole Phyllis Wendy));

say $cousins->();
say $aunts->();
say $cousins->();
say $aunts->();

Because every invocation of creates a separate lexical environment for its lexicas atonymous sub it
creates and returns closes over a unique lexical environmen

Because does not return these lexicals by value or by reference, Imer &®erl code besides the closure can
access them. They're encapsulated as effectively as apy letkical encapsulation.

Multiple closures can close over the same lexical variglthés is an idiom used occasionally to provide better englapion
of what would otherwise be a file global variable:

{

my $private_variable;

sub set_private { $private_variable = shift }
sub get_private { $private_variable }

...but be aware that you canneéstnamed functions. Named functions have package global séapelexical variables
shared between nested functions will go unshared when tiee faiction destroys its first lexical environméht

The CPAN module lets you violate lexical encapsulation, but anyone who utssesd breaks your cod
earns the right to fix any concomitant bugs without your help

11°J

Uses of Closures

Closures can make effective iterators over fixed-sizs,listit they demonstrate greater advantages when iteratangdist of
items too expensive to refer to directly, either becausepitesents data which costs a lot to compute all at once dodt'arge
to fit into memory directly.

Consider a function to create the Fibonacci series as yadiiteeelements. Instead of recalculating the series realysiuse a
cache and lazily create the elements you need:

sub gen_fib
my @fibs = (0, 1, 1);

return sub

{

24)f that's confusing to you, imagine the implementation.

80

Functions

my $item = shift;
if ($item >= @fibs)
{ for my $calc ((@fibs - 1) .. $item)
$fibs[$calc] = $fibs[$calc - 2] + $fibs[$calc - 1J;
}

return $fibs[$item];

Every call to the function returned by takes one argument, teh element of the Fibonacci series. The function gen-
erates all preceding values in the series as necessarnngdlobm, and returning the requested element. It delaygpuatation
until absolutely necessary.

If all you ever need to do is to calculate Fibonacci numbéris, &approach may seem overly complex. Consider, however,
that the function can become amazingly generic: it initializes an array ascaaaexecutes some custom code to
populate arbitrary elements of the cache, and returns thelated or cached value. If you extract the behavior whadbwates
Fibonacci values, you can use this code to provide other wittiea lazily-iterated cache.

Extract the function , and rewrite in terms of that function:

sub gen_caching_closure
my ($calc_element, @cache) = @_;
return sub
my $item = shift;
$calc_element->($item, \@cache) unless $item < @cache;

return $cache[$item];

sub gen_fib
my @fibs = (0, 1, 1);

return gen_caching_closure(
sub

my ($item, $fibs) = @_;
for my $calc (@$fibs - 1) .. $item)

$fibs->[$calc] = $fibs->[$calc - 2] + $fibs->[$calc - 1];

b
@fibs

The program behaves the same way as it did before, but thef bggher order functions and closures allows the separation
the cache initialization behavior from the calculationle# hext number in the Fibonacci series in an effective wagt@uizing

the behavior of code—in this case, —by passing in a higher order function allows tremendous
flexibility and abstraction.

In one sense, you can consider the builtins, ,and higher-order functions, especially if you compare
them to

81

Modern Perl

Closures and Partial Application

Closures can do more than abstract away structural dethiés; can allow you to customize specific behaviors. In oneseg
they can alssemoveunnecessary genericity. Consider the case of a functioohwthkes several parameters:

sub make_sundae

{
my %args = @_;

my $ice_cream = get_ice_cream($argsfice_cream});
my $banana = get_banana($args{banana});
my $syrup = get_syrup($args{syrup});

All of the customization possibilities might work very wéllyour full-sized anchor store in a shopping complex, byibifl have
a little drive-through ice cream cart near the overpass &/fjeu only serve French vanilla ice cream on Cavendish banana
every time you call you have to pass arguments that never change.

A technique callegbartial applicationbinds some arguments to a function such that you can fillérést at the point of call.
This is easy enough to emulate with closures:

my $make_cart_sundae = sub

{
return make_sundae(@_,
ice_cream => French Vanilla,
banana => Cavendish,

Instead of calling directly, you can invoke the function reference in and pass only the
interesting arguments, without worrying about forgettihg invariants or passing them incorreély

State versus Closures

Closures (see Closures, page 79) are an easy, effectiveadnday to make data persist between function invocatiati®ut
using global variables. If you need to share variables betwamed functions, you can introduce a new scope (see S,
72) for only those function declarations:

{
my $safety = 0;

sub enable_safety { $safety = 1 }
sub disable_safety { $safety = 0 }

sub do_something_awesome

return if $safety;

The encapsulation of functions to toggle the safety allohthigee functions to share state without exposing the Exiariable
directly to external code. This idiom works well for casesenexternal code should be able to change internal steté'sbu
clunkier when only one function needs to manage that state.

Suppose that you want to count the number of customers atig@aream parlor. Every hundredth person gets free spenkle

{

my $cust_count = O;

25You can even use from the CPAN to import this function into another namespaceatliy.

82

Functions

sub serve_customer

{

$cust_count++;
my $order = shift;

add_sprinkles($order) if $cust_count % 100 == 0)

This approactworks but creating a new lexical scope for a single function idtrces more accidental complexity than is
necessary. The builtin allows you to declare a lexically scoped variabléhna value that persists between invocations:

sub serve_customer

{
state $cust_count = O;
$cust_count++;

my $order = shift;
add_sprinkles($order) if $cust_count % 100 == 0)

You must enable this feature explicitly by using a modulehsas , the pragma, or requiring a specific
version of Perl of 5.10 or newer (with or , for example).
You may also use within anonymous functions, such as the canonical countmele:

sub make_counter
{

return sub

state $count = O;
return $count++;

...though there are few obvious benefits to this approach.

State versus Psuedo-State

Perl 5.10 deprecated a technique from previous versionsrbbl which you could effectively emulate . Using a postfix
conditional which evaluates to false with a declaration avoideeinitializing a lexical variable to orits initialized value.
In effect, a named function can close over its previous Bbscope by abusing a quirk of implementation.

Any use of a postfix conditional expression modifying a tativariable declaration now produces a deprecation wartis
too easy to write inadvertently buggy code with this techriquse instead where available, or a true closure otherwise.
Avoid this idiom, but understand it if you encounter it:

sub inadvertent_state

DEPRECATED; do not use
my $counter = 1 if 0;

Attributes

Named entities in Perl—variables and functions—can havetiaddl metadata attached to them in the formatifibutes
Attributes are names (and, often, values) which allow @etiges of metaprogramming (see Code Generation, page 141)

83

Modern Perl

Declaring attributes can be awkward, and using them effelgtis more art than science. They're relatively rare in
most programs for good reason, though thag offer compelling benefits of maintenance and clarity.

Using Attributes

In its simplest form, an attribute is a colon-preceded ifientattached to a variable or function declaration:

my $fortress :hidden

sub erupt_volcano :ScienceProject {..}

These declarations will cause the invocation of attribwtediers named and , if they exist for the

appropriate type (scalars and functions, respectiveliyhe appropriate handlers do not exist, Perl will throw a pdeitime
exception. These handlers couldawnything

Attributes may include a list of parameters; Perl treatatlas a list of constant strings, even if they may resemble otidaes,
such as numbers or variables. The module from the CPAN uses such parametric arguments to dtext:e

sub setup_tests :Test(setup) { ... }
sub test_monkey_creation :Test(10) { ... }

sub shutdown_tests :Test(teardown) { ... }

The attribute identifies methods which include test assesti@and optionally identifies the number of assertions the
method intends to run. While introspection (see Reflectmge 113) of these classes could discover the appropristte te
methods, given well-designed solid heuristics, the attribute makes the code and its intent unambiguous.

The and parameters allow test classes to define their own suppdttads without worrying about name
clashes or other conflicts due to inheritance or other diassgn concerns. Yocould enforce a design where all test classes
must override methods named and themselves, but the attribute approach gives more flétyibaiif
implementation.

The Catalyst web framework also uses attributes to deterthia visibility and behavior of methods within web
applications.

Drawbacks of Attributes
Attributes do have their drawbacks:

e The canonical pragma for working with attributes (the pragma) has listed its interface as experimental
for many years. Damian Conway's core module simplifies their implementation. Prefer it to
whenever possible.
¢ Modules which declare attribute handlers min$terit from to make the handlers visible to all

packages which use théPnThis is due to the implementation of attributes in Perl Blits

« Attribute handlers take effect during blocks, making them inopportune for projects which thewegimanipulate
the order of parsing and compilation, such as mod_perl.

e Arguments provided to attributes are only strings. performs some data conversion, but you may
have to disable it occasionally.

26You could also store them in , but that is global pollution and worse design.

84

Functions

The worst feature of attributes is their propensity to paaweird syntactic action at a distance. Given a snippet déco

with attributes, can you predict their effect? Good and esteudocumentation helps, but if an innocent-looking datien

on a lexical variable stores a reference to that variableesdmare, your expectations of the destruction of its costardy be

wrong, unless you read the documentation very carefullewise, a handler may wrap a function in another function and

replace it in the symbol table without your knowledge—coasia attribute which automatically invokes the core
module.

Complex features can produce compact and idiomatic codkalRevs developers to experiment with multiple design§ind
the best representation for their ideas. Attributes andragldvanced Perl features can help you solve complex prablieuh
they can also obfuscate the intent of code that could otlseraé simple.

Most programs never need this feature.

AUTOLOAD

You do not have to defineveryfunction and method anyone will ever call. Perl provides alma@ism by which you can
intercept calls to functions and methods which do not yedteXou can use this to define only those functions you neeth o
provide interesting error messages and warnings.

Consider the program:

#! perl
use Modern::Perl;

bake_pie(filing => apple);

When you run it, Perl will throw an exception due to the callte tindefined function . Now add a function called

sub AUTOLOAD {}

Nothing obvious will happen, except that there is no errdie presence of a function named in a package tells
Perl to call that function whenever normal dispatch for thattion or method fails. Change the to emit a message
to demonstrate this:

sub AUTOLOAD {say In AUTOLOAD()! }

Basic Features of AUTOLOAD

The function receives the arguments passed to the undefinetidanin directly. You may manipulate these
arguments as you like:

sub AUTOLOAD

{
pretty-print the arguments
local $" = , ;
say "In AUTOLOAD(@_)!"

Thenameof the undefined function is available in the pseudo-glolsaiable

sub AUTOLOAD

{
our SAUTOLOAD;

pretty-print the arguments

local $" = , ;
say "In AUTOLOAD(@_) for $AUTOLOAD!"

85

Modern Perl

The declaration (see Our Scope, page 74) scopes this variathle tmdy of . The variable contains the fully-
qualified name of the undefined function. In this case, thecfion is . A common idiom is to remove the
package name:

sub AUTOLOAD

{
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;

pretty-print the arguments

local $" = , ;

say "In AUTOLOAD(@_) for $name !"
}

Finally, whatever returns, the original call receives:

say secret_tangent(-1);

sub AUTOLOAD { return mu }
So far, these examples have merely intercepted calls tdineddunctions. You have other options.

Redispatching Methods in AUTOLOAD()

A common pattern in OO programming is delegateor proxy certain methods in one object to another, often contained in
otherwise accessible from the former. This is an intergstimd effective approach to logging:

package Proxy::Log;

sub new

{
my ($class, $proxied) = @_;
bless \$class, $proxied;

}

sub AUTOLOAD

{
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;
Log::method_call($name, @_);

my $self = shift;
return $$self->$name(@_);

}

This logs the method call. Its real magic is a simple pattern;ri¢fizences the proxied object from a blessed scalar
reference, extracts the name of the undefined method, tivekes the method of that name on the proxied object, pasising
given arguments.

Generating Code in AUTOLOAD()

That double-dispatch trick is useful, but it is slower thac@ssary. Every method call on the proxy must fail normaatish to
end up in . Pay that penalty only once by installing new methods inéofitoxy class as the program needs them:
sub AUTOLOAD
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;
my $method = sub
{
Log::method_call($name, @_);
my $self = shift;
return $self->$name(@_);
}
no strict refs;

*{ $AUTOLOAD } = $method;
return $method->(@_);

86

Functions

The body of the previous has become an anonymous function—in fact, a closure (seei€kgage 79) bound
over thenameof the undefined method. Installing that closure in the apgate symbol table allows all subsequent dispatch
to that method to find the created closure (and avoid). This code finally invokes the method directly and returns
the result.

Though this approach is cleaner and almost always morepaagist than handling the behavior directly in , the
codecalled by may detect that dispatch has gone through . In short, will reflect the
double-dispatch of both techniques shown so far. This magrbésue; certainly you can argue that it's an encapsulation
violation to care, but it's also an encapsulation violatioriet the details ohowan object provides a method to leak out into
the wider world.

Another idiom is to use a tailcall (see Tailcalls, page 35)@acethe current invocation of from 's
memory with a call to the destination method:
sub AUTOLOAD
{
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;
my $method = sub { ... }
no strict refs;
*{ $AUTOLOAD } = $method;
goto &$method;
}
This has the same effect as invoking directly, except that will no longer appear in the list of calls

available from , S0 it looks like the generated method was simply calledctlire

Drawbacks of AUTOLOAD

can be a useful tool in certain circumstances, but it can beuttito use properly. The naive approach to
generating methods at runtime means that the method will not report the right information about the caiiibs of
objects and classes. You can solve this in several ways;fdhe easiest is to predeclare all functions you plan to
with the pragma:

use subs qw(red green blue ochre teal);

That technique has the advantage of documenting your ibignthe disadvantage that you have to maintain a staticflist o
functions or methods.

You can also provide your own to generate the appropriate functions:

sub can

{
my ($self, $method) = @_;

use results of parent can()
my $meth_ref = $self->SUPER::can($method);
return $meth_ref if $meth_ref;

add some filter here
return unless $self->should_generate($method);

$meth_ref = sub { ... };
no strict refs;
return *{ $method } = $meth_ref;

}

sub AUTOLOAD
{
my ($self) = @_;
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;>

return unless my $meth_ref = $self->can($name);
goto &$meth_ref;

87

Modern Perl

Depending on the complexity of your needs, you may find itexa® maintain a data structure such as a package-scopkd has
which contains acceptable names of methods to generate.

Be aware that certain methods you do not intend to provide gaatrough . A common culprit is ,
the destructor of objects. The simplest approach is to geoai method with no implementation; Perl will happily
dispatch to this and ignore altogether:

skip AUTOLOAD()
sub DESTROY {}

The special methods , ,and never go through

If you mix functions and methods in a single namespace wiieérits from another package which provides its own ,
you may get a strange error message:

e of inherited AUTOLOAD for non-method slam_door () is deprecated

This occurs when you try to call a function which does nottria package which inherits from a class which containsvits o

. This is almost never what you intend. The problem compoumg@sveral ways: mixing functions and methods
in a single namespace is often a design flaw, inheritance and get complex very quickly, and reasoning about code
when you don't know what methods objects provide is dif cult

88

Regular Expressions and Matching

Perl's powerful ability to manipulate text comes in partfrds inclusion of a computing concept knownragular expressions
A regular expression (often shortenedegexor regexp is apatternwhich describes characteristics of a string of textegular
expression enginaterprets a pattern and applies it to strings of text totifigthose which match.

Perl's core documentation describes Perl regular exmmessh copious detail; see

and for a tutorial, the full documentation, and a reference guiespectively. Jeffrey Friedl's book
Mastering Regular Expressiorexplains the theory and the mechanics of how regular expressvork. Even though those
references may seem daunting, regular expressions aiedike-you can do many things with only a little knowledge.

Literals

The simplest regexes are simple substring patterns:

my $name = Chatfield;
say "Found a hat!" if $name =~ /hat/ ;

The match operator (or, more formally,) contains a regular expression—in this example,. Even though that reads
like a word, it means “the character, followed by the character, followed by the character, appearing anywhere in the
string.” Each character in is anatomin the regex: an indivisible unit of the pattern. The regexdiiig operator () is an
infix operator (see Fixity, page 60) which applies the ragekpression on its right to the string produced by the esgioa on
its left. When evaluated in scalar context, a match evaluatagrue value if it succeeds.

The negated form of the binding operator J evaluates to a false value if the match succeeds.

The qgr// Operator and Regex Combinations

Regexes are first-class entities in modern Perl when atesitl the operator:

my $hat = qr/hat/
say Found a hat! if $name =~ /$hat/;

The function from works much like , except that its second argument is a regular
expression object produced by

You may interpolate and combine them into larger and moreptexpatterns:

my $hat = qgr/hat/;

my $field = gr/field/;

say Found a hat in a field! if $name =~ / hatfield /;
or

like($name, qr/ hatfield /, Found a hat in a field!);

89

Modern Perl

Quantifiers
Regular expressions are far more powerful than previoumples have demonstrated; you can search for a literal sodpstr
within a string with the builtin. Using the regex engine for that is like flying yourtanomous combat helicopter to the

corner store to buy spare cheese.

Regular expressions get more powerful through the usegex quantifierswhich allow you to specify how often a regex
component may appear in a matching string. The simplesttifigaiis thezero or one quantifigror

my $cat_or_ct = qgr/ca 21,

like(cat, $cat_or_ct, "cat matches /ca?t");
like(ct, $cat_or_ct, "ct matches /ca?t/");

Any atom in a regular expression followed by theharacter means “match zero or one of this atom.” This regxpression
matches if there are zero or oneharacters immediately following acharacter and immediately preceding eharacteand
alsomatches if there is one and only oneharacter between theand characters.

Theone or more quantifieror , matches only if there is at least one of the preceding atdireiappropriate place in the string
to match:

my $one_or_more_a = qrica +t/;

like(cat, $one_or_more_a, "cat matches /ca+t/");

like(caat, $one_or_more_a, "caat matches /cat+t/");

like(caaat, $one_or_more_a, "caaat matches /ca+t/") ;
like(caaaat, $one_or_more_a, "caaaat matches /ca+t/ ")

unlike(ct, $one_or_more_a, "ct does not match /ca+t/");

There is no theoretical limit to the number of quantifiedrasowhich can match.
Thezero or more quantifieis ; it matches if there are zero or more instances of the qued@tom in the string to match:

my $zero_or_more_a = qgrica *t/;

like(cat, $zero_or_more_a, "cat matches /ca * /");
like(caat, $zero_or_more_a, "caat matches /ca * ");
like(caaat, $zero_or_more_a, "caaat matches /ca ")
like(caaaat, $zero_or_more_a, "caaaat matches /ca *t/");
like(ct, $zero_or_more_a, "ct matches /ca * ");

This may seem useless, but it combines nicely with otherxrég@tures to indicate that you don't care about what may or
may not be in that particular position in the string to matehen somostregular expressions benefit from using thand
qguantifiers far more than thequantifier, as they avoid expensive backtracking and esgoyeur intent more clearly.

Finally, you can specify the number of times an atom may maitthnumeric quantifiers ~ means that a match must occur
exactlyn times.

equivalent to qr/cat/;
my $only_one_a = qrica {1} t/;

like(cat, $only_one_a, "cat matches /ca{l}t/");

means that a match must occur at leasines, but may occur more times:

equivalent to qr/ca+t/;
my $at_least_one_a = qgr/ca {1} t;

like(cat, $at_least_one_a, "“cat matches /ca{l,}t/") ;
like(caat, $at_least_one_a, "caat matches /ca{l}t/ ");
like(caaat, $at_least one_a, "caaat matches /ca{l,}),
like(caaaat, $at_least_one_a, "caaaat matches /ca{l JU);

Regular Expressions and Matching

means that a match must occur at leasines and cannot occur more thartimes:

my $one_to_three_a = qr/ca {1,3} t/;

like(cat, $one_to_three_a, "cat matches /ca{l,3}/");
like(caat, $one_to_three_a, "caat matches /ca{l,3}t I");
like(caaat, $one_to_three_a, "caaat matches /ca{l,3 A

unlike(caaaat, $one_to_three_a, "caaaat does not mat ch /ca{l,3{t/");
Greediness

The and quantifiers by themselves agreedy quantifiersthey match as much of the input string as possible. This is
particularly pernicious when matching the “zero or more-newline characters” pattern of :

a poor regex
my $hot_meal = qr/hot. *meall;

say Found a hot meal! if | have a hot meal =~ $hot_meal,
say Found a hot meal!
if | did some one-shot, piecemeal work! =~ $hot_meal;

Greedy quantifiers always try to match as much of the inpirigtas possiblérst, backing off only when it's obvious that the
match will not succeed. You may not be able to fit all of theuttssinto the four boxes in 7 Down if look for “loam” witH:

my $seven_down = gr/l$letters_only *m/;

This will match , ,and before it reaches . The soil might be nice there, but those words are
all too long—and the matches start in the middle of the words.

Turn a greedy quantifier into a non-greedy quantifier byeaqjng the quantifier:

my $minimal_greedy_match = qr/hot. *?meall;

When given a non-greedy quantifier, the regular expressigine will prefer theshortestpossible potential match, and will
increase the number of characters identified by thetoken combination only if the current number fails to maacause
matches zero or more times, the minimal potential matchhisrtbken combination is zero characters:

say Found a hot meal if ilikeahotmeal =~ /$minimal_gree dy_match/;

Use to match one or more items non-greedily:

my $minimal_greedy_at_least_one = qr/hot.+?meal/;
unlike(ilikeahotmeal , $minimal_greedy_at_least_one);

like(i like a hot meal, $minimal_greedy_at_least_one);

The quantifier modifier also applies to the(zero or one matches) quantifier as well as the range quenstiin every case,
it causes the regex to match as little of the input as possible

The greedy patterns and are tempting but dangerous. If you write regular expressiiih greedy matches, test them
thoroughly with a comprehensive and automated test suitie r@presentative data to lessen the possibility of unpleas
surprises.

27Assume that is a regular expression which matches only letter charagteesCharacter Classes, page 93).

91

Modern Perl

Regex Anchors

Regex anchorforce a match at a specific position in a string. Htart of string anchoi(n) ensures that any match will start
at the beginning of the string:

also matches "lammed", "lawmaker", and "layman"
my $seven_down = qr\AI${letters_only}{2}m/;

Theend of line string anchofn) ensures that any match wédhdat the end of the string.

also matches "loom", which is close enough
my $seven_down = qrA\Al${letters_only}{2}m\z/;

Theword boundary metacharactén) matches only at the boundary between a word charatt@afd a non-word character
(n). Thus to find but not , use the anchored regex:

my $seven_down = qr/\bi${letters_only}{2}m\b/;

Like Perl, there's more than one way to write a regular exgiogs Consider choosing the most expressive and
maintainable one.

Metacharacters

Regular expressions get more powerful as atoms get moreajeRer example, the character in a regular expression means
“match any character except a newline”. If you wanted todearlist of dictionary words for every word which might match
7 Down ("Rich soil”) in a crossword puzzle, you might write:
for my $word (@words)
{

next unless length($word) == 4;

next unless $word =~ /| .om/

say "Possibility: $word";
}

Of course, if your list of potential matches were anythingestthan a list of words, this metacharacter could cause fals
positives, as it also matches punctuation charactersesgaice, numbers, and many other characters besides woadtens.
Then metacharacter represents all alphanumeric characteasi{imicode sense—see Unicode and Strings, page 17) and the
underscore:

next unless $word =~ /I \w\w m/;

Then metacharacter matches digits—not just 0-9 as you expecariyut/nicode digit:

not a robust phone number matcher
next unless $potential_phone_number =~ / \d {3}- \d {3}- \d {4},
say "I have your number: $potential_phone_number";

Use then metacharacter to match whitespace, whether a literal spat@ character, a carriage return, a form-feed, or a
newline:

my $two_three_letter_words = qgrAw{3} \s \w{3}/;

These metacharacters have negated forms. To match anyciehaecepta word character, use . To match a non-digit
character, use . To match anything but whitespace, use To match a non-word boundary, use

The regex engine treats all metacharacters as atoms.

92

Regular Expressions and Matching

Character Classes
If the range of allowed characters in these four groups specific enough, you can specify your owharacter classeby
enclosing them in square brackets:

qr/ [aeiou 1/
qr/c${vowels}/;

my $vowels
my $maybe_cat

The curly braces around the name of the scalar variable helps disambiguate the variable name. Withput
that, the parser would interpret the variable name as , Which either causes a compile-time error about an
unknown variable or interpolates the contents of an exjstin into the regex.

If the characters in your character set form a contiguougeayou can use the hyphen charactgrgs a shortcut to express
that range. Now it's possible to define the regex:

my $letters_only = qr/[a-zA-Z]/;

Move the hyphen character to the start or end of the classtoda it in the class:
my $interesting_punctuation = qr/[-1?)/;

...0r escape it:

my $line_characters = qr/[|=\-_]/;

Just as the word and digit class metacharactersafidn) have negations, so too you can negate a character classhéJse
caret () as the first element of the character class to mean “anytanepthese characters”:

my $not_a_vowel = qgr/[*aeiou]/;

Use a caret anywhere but this position to make it a membesedfhiaracter class. To include a hyphen in a negated
character class, place it after the caret or at the end oflélss,mr escape it.

Capturing

It's often useful to match part of a string and use it latemha@s you want to extract an address or an American telephone
number from a string:

my $area_code = gri\(\d{3}\)/;
my $local_number = qrAd{3}-2\d{4}/;
my $phone_number = gr/$area_code\s?$local_number/;

Note the escaping of the parentheses within ; this will become obvious in a moment.

93

Modern Perl

Named Captures

Given a string, , which contains contact information, you can apply the regular expression
andcaptureany matches into a variable wittamed captures

if ($contact_info =~ /(?<phone>$phone_number)/)

{
}

say "Found a number $+{phone}";

The capturing construct can look like a big wad of punctugtiaut it's fairly simple when you can recognize it as a single
chunk:

(?<capture name> ...)

The parentheses enclose the entire capture. The construct provides a hame for the capture buffer and mustol
the left parenthesis. The rest of the construct within themiheses is a regular expression. If and when the regehesathis
fragment, Perl stores the captured portion of the stringe@mbagic variable : a hash where the key is the name of the capture
buffer and the value is the portion of the string which mattctie buffer's regex.

Parentheses are special to Perl 5 regular expressionsfawltdbey exhibit the same grouping behavior as parenthdsen
regular Perl code. They also enclose one or more atoms tareaphatever portion of the matched string they match. To use
literal parentheses in a regular expression, you must geefeem with a backslash, just as in the variable.

Numbered Captures

Named captures are new in Perl 5.10, but captures have eiisierl for many years. You may encounteimbered captures
as well:

if ($contact_info =~ /($phone_number)/)

{
}

say "Found a number $1";

The parentheses enclose the fragment to capture, but theoerégex metacharacter giving thame
of the capture. Instead, Perl stores the captured substriageries of magic variables starting with and continuing for as
many capture groups are present in the regex.firfeematching capture that Perl finds goes intq the second into , and
so on. Capture counts start at thygeningparenthesis of the capture; thus the first left parenthesigns the capture into ,
the second into , and so on.

While the syntax for named captures is longer than for nuntheaptures, it provides additional clarity. You do not have
to count the number of opening parentheses to figure outhehet particular capture is or , and composing regexes
from smaller regexes is much easier, as they're less semsitichanges in position or the presence or absence of aaptar
individual atoms.

Name collisions are still possible with named capturesydiiothat's less frequent than number collisions with
numbered captures. Consider avoiding the use of capturegéx fragments; save it for top-level regexes.

Numbered captures are less frustrating when you evaluaggehrin list context:

if (my ($number) = $contact_info =~ /($phone_number)/)

say "Found a number $number";

Perl will assign to the Ivalues in order of the captures.

94

Regular Expressions and Matching

Grouping and Alternation

Previous examples have all applied quantifiers to simmenat They can also apply to more complex subpatterns as a&whol

my $pork = qr/pork/;
my $beans = qr/beans/;

like(pork and beans, qr\A$pork?. * ?$beans/,
maybe pork, definitely beans);

If you expand the regex manually, the results may surprise yo

like(pork and beans, grA\Apork?. * ?beans/,
maybe pork, definitely beans);

This still matches, but consider a more specific pattern:

my $pork = qr/pork/;
my $and = gr/and/;
my $beans = qr/beans/;

like(pork and beans, qrAA$pork? $and? $beans/,
maybe pork, maybe and, definitely beans);

Some regexes need to match one thing or another. Usstdraationmetacharacter | to do so:

my $rice = qr/ricel;
my $beans = qr/beans/;

like(rice, qr/$rice|$beans/, Found some rice);
like(beans, gr/$rice|$beans/, Found some beans);

The alternation metacharacter indicates that either diegdragment may match. Be careful about what you interpsea
regex fragment, however:

like(rice, qr/ricelbeans/, Found some rice);
like(beans, gr/ricelbeans/, Found some beans);
unlike(ricb, qr/rice|lbeans/, Found some weird hybrid);

It's possible to interpret the pattern as meaning , followed by either or , followed by —but alternations
always include thentirefragment to the nearest regex delimiter, whether the stana of the pattern, an enclosing parenthesis,
another alternation character, or a square bracket.

To reduce confusion, use named fragments in variables () or grouping alternation candidatesnon-capturing
groups

my $starches = qr/(?:pasta|potatoes|rice)/;

The sequence groups a series of atoms but suppresses capteinangds. In this case, it groups three alternatives.

If you print a compiled regular expression, you'll see thatstringification includes an enclosing non-capturing
group; stringifies as

95

Modern Perl

Other Escape Sequences

Perl interprets several characters in regular expressgmetacharactersvhich represent something different than their literal
characters. Square brackets always denote a characteaocldparentheses group and optionally capture pattenménaig.

To match diteral instance of a metacharactescapdt with a backslashr(). Thusn refers to a single left parenthesis and
n refers to a single right square bracket.refers to a literal period character instead of the "matglttang but an explicit
newline character" atom. Other useful metacharacteroftext need escaping are the pipe charactgaid the dollar sign ().
Don't forget about the quantifiers either; , and also qualify.

To avoid escaping everything (and worrying about forggttim escape interpolated values), usenietacharacter disabling
characters Then metacharacter disables metacharacter processing ua#ldhes the sequence. This is especially useful
when taking match text from a source you don't control wheitimg the program:

my ($text, $literal_text) = @_;

return $text =~ NQ$literal_text\E/;

The argument can contain anything—the string , for example. Withn andn , Perl will not
interpret the zero-or-more quantifier as a quantifiertdad, it will parse the regex asn n n and attempt to match
literal asterisk characters.

Assertions

The regex anchorsi(andn) are a form ofegex assertionwhich requires that a condition is present but doesn'talytmatch
a character in the string. That is, the regexn will alwaysmatch, no matter what the string contains. The metachasacte
n andn are also assertions.

Zero-width assertionmatch gpattern not just a condition in the string. Most importantly, they ot consume the portion of
the pattern that they match. For example, to find a cat onats gou might use a word boundary assertion:

my $just_a_cat = gr/cat\b/;

... but if you want to find a non-disastrous feline, you migke azero-width negative look-ahead assertion

my $safe_feline = gr/cat(?!astrophe)/;

The construct matches the phrase only if the phrase does not immediately follow.

The zero-width positive look-ahead assertion

my $disastrous_feline = gr/cat(?=astrophe)/;

...Mmatches the phrase only if the phrase immediately follows. This may seem useless, as a normallaegu
expression can accomplish the same thing, but consideuifyant to find all non-catastrophic words in the dictionaryieh
start with . One possibility is:

my $disastrous_feline = qr/cat(?!astrophe)/;

while (<$words>)

{
chomp;
next unless NA(?<some_cat>$disastrous_feline. *\Z/;
say "Found a non-catastrophe $+{some_cat}";

96

Regular Expressions and Matching

Because the assertion is zero-width, it consumes none afilnee string. Thus the anchoredn pattern fragment must be
present; otherwise the capture would only capture theportion of the source string.

Zero-width look-behind assertions also exist. Unlike thaklahead assertions, the patterns of these assertionfiavesfixed
widths; you may not use quantifiers in these patterns.

To assert that your feline never occurs at the start of ajioe might use theero-width negative look-behind assertion

my $middle_cat = qr/(?<!")cat/;

...where the construct contains the fixed-width pattern. Otherwise you could eggrthat the must always occur
immediately after a space character with fieeo-width positive look-behind assertion

my $space_cat = qr/(?<=\s)cat/;

...where the construct contains the fixed-width pattern. This approach can beuligdfen combining a global regex
match with then maodifier, but it's an advanced feature you likely won't useea.

Regex Modifiers

The regular expression operators allow several modifeechange the behavior of matches. These modifiers appdas entd
of the match, substitution, and operators. For example, to enable case-insensitive nmatchi

my $pet = CaMelLiA;

like($pet, gr/Camelia/, You have a nice butterfly there

like($pet, gr/Camelia/i, Your butterfly has a broken shif t key); ’

The first will fail, because the strings contain different letterbelsecond will pass, because the modifier
causes the regex to ignore case distinctiorennd are equivalent in the second regex due to the modifier.

You may also embed regex modifiers within a pattern:

my $find_a_cat = qr/(?<feline>(?i)cat)/;

The syntax enables case-insensitive matching only for itsosnad) group: in this case, the entire capture group.
You may use multiple modifiers with this form (provided theake sense for a portion of a pattern). You may also disable
specific modifiers by preceding them with the minus chaactt):

my $find_a_rational = gr/(?<number>(?-i)Rat)/;

The multiline operator, , allows the and anchors to match at any start of line or end of line within tinimg.

The modifier treats the source string as a single line such tieat imetacharacter matches the newline character. Damian
Conway suggests the mnemonic thatmodifies the behavior ahultipleregex metacharacters, while modifies the behavior
of asingleregex metacharacter.

The modifier allows you to embed additional whitespace and cemswithin patterns without changing their meaning.
With this modifier in effect, the regex engine treats whitese and the comment charactey &nd everything following as
comments; it ignores them. This allows you to write much nresslable regular expressions:

my $attr_re = qr{
n # start of line

miscellany

(2
[\n\s] = # blank spaces and spurious semicolons
(22N * .« 2\ %[)? # C comments

)*

97

Modern Perl

attribute marker
ATTR

type

\s+

(U?INTVAL
| FLOATVAL
| STRING\s+\ *
| PMC\s+\ =*
| \w =

)

X

This regex isn'tsimple but comments and whitespace improve its readability. Egou compose regexes together from
compiled fragments, the modifier can still improve your code.

The modifier matches a regex globally throughout a string. Thékes sense when used with a substitution:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s/Scarlett O Hara/Mauve Midway/g;

When used with a match—not a substitution—themetacharacter allows you to process a string within a loa @runk
at a time.n matches at the position where the most recent match endgutotess a poorly-encoded file full of American
telephone numbers in logical chunks, you might write:

while ($contents =~ NG(\W{3})(\W{3})(\w{4})/g)
{

push @numbers, "($1) $2-$3";

Be aware that the anchor will take up at the last point in the string where thevfmus iteration of the match occurred. If
the previous match ended with a greedy match such athe next match will have less available string to match. Ti$e of
lookahead assertions can become very important here,yaddh®t consume the available string to match.

The modifier allows you to write arbitrary Perl 5 code on the tigitde of a substitution operation. If the match succeeds,
the regex engine will run the code, using its return valudastibstitution value. The earlier global substitutionmepke could
be more robust about replacing some or all of an unfortunatagonist's name with:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s{Scarlett(O Hara)?}
{ Mauve . defined $1 ? Midway : }ge;

You may add as many maodifiers as you like to a substitution. Each additionaluscence of this modifier will cause another
evaluation of the result of the expression, though only gelfers tend to use or anything more complex.

Smart Matching

The smart match operator,, compares two operands and returns a true value if they neatcin other. The fuzziness of the
definition demonstrates the smartness of the operatottyffeeof comparison depends on the type of both operandsv&ou'
seen this behavior before, as (see Given/When, page 33) performs an implicit smart match.

See the “Smart matching in detail” section of for far more detail. Some of the semantics|of
smart match have changed between Perl 5.10.0 and Perl 5sb0nihen possible, use smart matching only after
5.10.1.

The smart match operator is an infix operator:

98

Regular Expressions and Matching

say They match (somehow) if $loperand ~~ $roperand;

The type of comparison generally depends first on the typhefright operand and then on the left operand. For example,
if the right operand is a scalar with a numeric componentctiraparison will use numeric equality. If the right operasdi
regex, the comparison will use a grep or a pattern matchelfitiht operand is an array, the comparison will perform @ gre

a recursive smart match. If the right operand is a hash, thpadson will check the existence of one or more keys.

For example:

scalar numeric comparison

my $x = 10;
my $y = 20;
say Not equal numerically unless $x ~~ $y;

scalar numeric-ish comparison

my $x = 10;

my $y = 10 little endians;

say Equal numeric-ishally if $x ~~ $y;
.. or:

my $needlepat = gr/needle/;

say Pattern match if $needle ~~ $needlepat;
say Grep through array if @haystack ~~ $needlepat;
say Grep through hash keys if %hayhash ~~ $needlepat;
..or:
say Grep through array if $needlepat ~~ @haystack;
say Array elements exist as hash keys if %hayhash ~~ @hayst ack;
say Array elements smart match if @strawstack ~~ @haystac k;
. or.
say Grep through hash keys if $needlepat ~~ %hayhash;
say Array elements exist as hash keys if @haystack ~~ %hayh ach;
say Hash keys identical if %hayhash ~~ 9%haymap;

These comparisons work correctly if one operandnsfarenceo the given data type. For example:

say Hash keys identical if %hayhash ~~ \%hayhash;

You may overload (see Overloading, page 145) the smart ngggehator on objects. If you do not do so, the smart match
operator will throw an exception if you try to use an objecaaperand.

You may also use other data types such as and function references as smart match operands. See thiéncha
for more details.

99

Objects

Writing large programs requires more discipline than wgtsmall programs, due to the dif culty of managing all of the
details of your program simultaneously. Abstraction (firtgdand exploiting similarities and near-similaritiesjancapsulation
(grouping specific details together and accessing thententhey belong) are essential to managing this complexity.

Functions help, but functions by themselves aren't suintitor the largest programs. Object orientation is a popt@ehnnique
for grouping functions together into classes of relatecalvers.

Perl 5's default object system is minimal. It's very flexdéstyou can build almost any other object system you want ontop o
it—but it provides little assistance for the most common sask

Moose

Moose is a powerful and complete object system for Perl Guiltb on the existing Perl 5 system to provide simpler degul
better integration, and advanced features from languagdsas Smalltalk, Common Lisp, and Perl 6. It's still worthreing
the default Perl 5 object system—especially when you hav&tiegi code to maintain—but Moose is the best way to write
object oriented code in modern Perl 5.

Object orientation(O0O), orobject oriented programmin@OP), is a way of managing programs by categorizing theirmm
nents into discrete, unique entities. Theseagcts In Moose terms, each object is an instance ofeags which serves as a
template to describe any data the object contains as weB apécific behaviors.

Classes

A class in Perl 5 stores class data. By default, Perl 5 classepackages to provide namespaces:

package Cat;

use Moose;

This class appears to do nothing, but Moose does a lot of work fael#ie class and register it with Perl. With that done,
you can create objects (orstance}of the class:

my $brad = Cat->new();
my $jack = Cat->new();

The arrow syntax should look familiar. Just as an arrow @gegfces a reference, an arrow calls a method on an objectss:. cl

Methods

A methods a function associated with a class. It resembles a fullgtified function call in a superficial sense, but it diffen
two important ways. First, a method call always hasrocanton which the method operates. When you create an object, the
nameof the class is the invocant. When you call a method on an instdhat instance is the invocant:

my $fuzzy = Cat->new();
$fuzzy ->sleep_on_keyboard();

100

Objects

Second, a method call always involvedigpatchstrategy. The dispatch strategy describes how the objstdrsydecidew/hich
method to call. This may seem obvious when there's only g but method dispatch is fundamental to the design of object
systems.

The invocant of a method in Perl 5 is its first argument. Faregle, the class could have a method:

package Cat;
use Moose;
sub meow

my $self = shift;
say Meow!;

Now all instances can wake you up in the morning because they haagph yet:

my $alarm = Cat->new();
$alarm->meow();
$alarm->meow();
$alarm->meow();

By pervasive convention, methods store their invocantsxichl variables named . Methods which access invocant data
areinstance methodd$ecause they depend on the presence of an appropriatairiiocwork correctly. Methods (such as

) which do not access instance datacess methodss you can use the name of the class as an invocant. Conssruct
are also class methods. For example:

Cat->meow() for 1 .. 3;

Class methods can help you organize your code into namespat®ut requiring you to import (see Importing, page 67)
functions, but a design which relies heavily on class metfodanything other than constructors may be the sign of headd
thinking.

Attributes

Every object in Perl 5 is unique. Objects can contginibutes or private data associated with each object. You may alao he
this described amstance datar state

To define object attributes, describe them as part of thescla

package Cat;
use Moose;

has name, is => ro, isa => Str;

In English, that line of code means “ objects have a attribute. It's readable but not writable, and it's a string

In Perl and Moose terms, is a function which declares an attribute. The first arguniethe name of the attribute, in this
case . The pair of arguments declares that this attributegad nly, so you cannot modify it after you've
set it. Finally, the pair declares that the value of this attribute can only be ang. This will all become clear

soon.

That single line of code creates an accessor method () and allows you to passa parameter to the constructor:

101

Modern Perl

use Cat;
for my $name (qw(Tuxie Petunia Daisy))

my $cat = Cat->new(name => $name);
say "Created a cat for ", $cat->name();

Attributes do noneedto have types, in which case Moose will skip all of the vedfion and validation for you:

{
package Cat;

use Moose;
has name, is => ro, isa => Str;

has age, is => ro;

}

my $invalid = Cat->new(name => bizarre, age => purple);

This can be more flexible, but it can also lead to strangergiifcsomeone tries to provide invalid data for an attribdtee
balance between flexibility and correctness depends onlgoal coding standards and the type of errors you want thcat

The Moose documentation uses parentheses to separatélarnt@ttame from its characteristics:
has name => (is => ro, isa => Str);

Perl parses both that form and the form used in this book thees@ay. Youcould achieve the same effect hy
writing either:

has(name, is, ro, isa, Str);
has(qw(name is ro isa Str));

... butin this case, extra punctuation adds clarity. The@ggh of the Moose documentation is most useful when
dealing with multiple characteristics:

has name => (
is = 0,
isa => Str,

advanced Moose options; perldoc Moose
init_arg => undef,
lazy build => 1,

)

...but for the sake of simplicity of introduction, this bopkefers to use less punctuation. Perl gives you |the
flexibility to choose whichever approach makes the intdryiour code most clear.

If you mark an attribute as readalded writable (with), Moose will create anutator method—a method you can
use to change the value of an attribute:

package Cat;

use Moose;

has name, is => ro, isa => Str;
has age, is => ro, isa => Int;
has diet, is => rw;

}

my $fat = Cat->new(name => Fatty, age => 8, diet => Sea Trea ts);
say $fat->name(), eats , $fat->diet();

$fat->diet(Low Sodium Kitty Lo Mein);
say $fat->name(), now eats , $fat->diet();

102

Objects

Trying to use a accessor as a mutator will throw the exception

Using or is a matter of design, convenience, and purity. Moose doesnforce any particular philosophy in this area.
One school of thought suggests making all instance datand passing all relevant data into the constructor (see bability,
page 116). Inthe example, might still be an accessor, but the constructor could takeélar of the cat's birth and
calculate the age itself based on the current year, ratherrélying on someone to update the age of all cats manudilly. T
approach helps to consolidate all validation code and helpasure that all created objects have valid data.

Now that individual objects can have their own instance ,daiavalue of object orientation may be more obvious. An abje
is a group of related data as well as behaviors appropriathdb data. A class is the description of the data and belrsathat
instances of that class possess.

Encapsulation

Moose allows you to declaxghichattributes class instances possess (a cat has a name) as thelkttributes of those attributes
(you cannot change a cat's name). By default, Moose doesanotipyou to describe how an objestbresits attributes; Moose
decides that for you. This information is available if yoaltg need it, but the declarative approach can actually aw@rour
programs. In this way, Moose encouragggapsulationhiding the internal details of an object from external ssef that
object.

Consider how you might change the way handles ages. Instead of requiring a static value for an aggeg to the construc-
tor, pass in the year of the cat's birth and calculate the ageeaded:

package Cat;

use Moose;

has name, is => ro, isa => Str;
has diet, is => rw;

has birth_year, is => ro, isa => Int;

sub age

my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year();
}

While the syntax focreating objects has changed, the syntax fising objects has not. The method does the
same thing it has always done, at least as far as all codeleuwibthe class understandslowit does that has changed, but
that is a detail internal to the class and encapsulated within that class itself.

Retain the old syntax focreating objects by customizing the generated constructor to allow passing an
parameter. Calculate from that. See

This new approach to calculating ages has another advantage; you candefault attribute valueso reduce the code
necessary to create a object:

package Cat;
use Moose;
has name, is => ro, isa => Str;
has diet, is => rw, isa => Str;

has birth_year, is => ro, isa => Int,
default => sub { (localtime)[5] + 1900 };

The keyword on an attribute takes a function reference whichrnstthe default value for that attribute when con-
structing a new object. If the constructor does not receivapropriate value for that attribute, the object gets dedault
value instead. Now you can create a kitten:

103

Modern Perl

my $kitten = Cat->new(name => Bitey);

...and that kitten will have an age ofuntil next year. You can also use a simple value, such as a @wuorbstring, as a
default value. Use a function reference when you need tailzaéesomething unique for each object, including a hashraya
reference.

Polymorphism

A program which deals with one type of data and one type of¥iehan that data receives few benefits from the use of object
Encapsulation is useful, to be sure—but the real power ofobljgentation is not solely in encapsulation. A well degidr©O
program can manage many types of data. When well designestslaacapsulate specific details of objects into the apiptep
places, something curious happens to the rest of the progrhas the opportunity to becontessspecific.

In other words, moving the specifics of the details of what pnogram knows about individual s (the attributes) and what
the program knows that s can do (the methods) into the class means that code that deals with instances can happily
ignorehow does what it does.

This is clearer with an example. Consider a function whicécdbes an object:

sub show_vital_stats

{
my $object = shift;

say My name is , $object->name();
say | am , $object->age();
say | eat , $object->diet();

It's obvious (in context) that you can pass a object to this function and get sane results. You can do theesaith other
types of objects. This is an important object orientatiooperty calledoolymorphismwhere you can substitute an object of
one class for an object of another class if they provide theesexternal interface.

Any object of any class which provides the , , and accessors will work with this function. The function
is suf ciently generic that any object which respects thiteiface is a valid parameter.

Some languages and environments require a formal rel&ijpbstween two classes before allowing a program to

substitute instances of one class for another. Perl 5 pesvichys to enforce these checks, but it does not require
them. Its default ad-hoc system lets you treat any two imgsuwith methods of the same name as equivalent
enough. Some people call thdsick typing arguing that any object which can is suf ciently duck-like
that you can treat it as a duck.

The benefit of the genericity in is that neither the specific type nor the implementationhaf dbject
provided matters. Any invocant is valid if it supports threethods, , ,and which take no arguments and
each return something which can concatenate in a stringxonfou may have a hundred different classes in your cod® no
of which have any obvious relationships, but they will workhathis method if they conform to this expected behavior.

This is an improvement over writing specific functions taraxt and display this information for even a fraction ofsadwun-
dred classes. This genericity requires less code, and asi@dl-defined interface as the mechanism to access ttosnation
means that any of those hundred classes can calculate filwah@tion in any way possible. The details of those caldonestis
where it matters most: in the bodies of the methods in theselathemselves.

Of course, the mere existence of a method called or does not by itself imply the behavior of that object. A
object may have an which is an accessor such that you can discover is 8 but is3. A object
may have an method that lets you control how long to stow to sharpen it. In other words, may be an

accessor in one class but not in another:

104

Objects

how old is the cat?
my $years = $zeppie->age();

store the cheese in the warehouse for six months
$cheese->age();

Sometimes it's useful to knowhatan object does. You need to understand its type.

Roles

A role is a named collection of behavior and stite\ class is like a role, with the vital difference that you dastantiate a
class, but not a role. While a class is primarily a mechanisnofganizing behaviors and state into a template for objects
role is primarily a mechanism for organizing behaviors atadiesinto a named collection.

A role is something a class does.

The difference between some sort of —with a , an , and a preferred —and —which can
in storage—may be that the does the role, while the does the role.

While youcouldcheck that every object passed into is an instance of , You lose some genericity

that way. Instead, check that the objdoesthe role:

{
package LivingBeing;

use Moose::Role;

requires qw(name age diet);

Anything which does this role must supply the , , and methods. This does not happen automatically; the
class must explicitly mark that it does the role:

package Cat;

use Moose;
has name, is => ro, isa => Str;
has diet, is => rw, isa => Str;

has birth_year, is => ro, isa => Int,
default => (localtime)[5] + 1900;

with LivingBeing ;

sub age { ... }

That single line has two functions. First, it tells Moosettthe class does the named role. Seconchihposeshe role into the
class. This process checks that the ckasaehowprovides all of the required methods and all of the requit&ibates without
potential collisions.

The class provides and methods as accessors to named attributes. It also ded&oeen method.

The keyword used to apply roles to a class must oafter attribute declaration so that composition can
identify any generated accessor methods.

Now all instances will return a true value when queried if they palevthe role and objects should
not:
283ee the Perl 6 design documents on roles at and research on traits in Smalltalk at

for copious details.

105

Modern Perl

say Alive! if $fluffy->DOES(LivingBeing);
say Moldy! if $cheese->DOES(LivingBeing);

This design approach may seem like extra bookkeeping, bepirates theapabilitiesof classes and objects from theple-
mentationof those classes and objects. The special behavior of thelass, where it stores the birth year of the animal and
calculates the age directly, could itself be a role:

{
package CalculateAge::From::BirthYear;
use Moose::Role;

has birth_year, is => ro, isa => Int,
default => sub { (localtime)[5] + 1900 };
sub age
{
my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year();

Moving this code out of the class into a separate role makes it available to other dakskmsv can compose both roles:

package Cat;
use Moose;

has name, is => ro, isa => Str;
has diet, is => rw;

with LivingBeing, CalculateAge::From::BirthYear ;

The implementation of the method supplied by the satisfies the requirement of
the role, and the composition succeeds. Checking that objecthel role remains unchanged,
regardless ohow objects do this role. A class could choose to provide its own method or obtain it from another role;
that doesn't matter. All that matters is that it contains.of@s isallomorphism

Pervasive use of allomorphism in your designs can reducsitkeof your classes and allow you to share more code between
classes. It also allows more flexibility in your design bymiag specific collections of behaviors so that you can thst t
capabilities of objects and classes and not their impleatiems.

For a lengthy comparison of roles and other design techsigueh as mixins, multiple inheritance, and monkeypatchiag

Roles and DOES()

Applying a role to a class means that the class and its instand! return true when you call the method on them:

say This Cat is alive! if $kitten->DOES(LivingBeing);

Inheritance

Another feature of Perl 5's object systemitgheritance where one class specializes another. This establishdatmmship
between the two classes, where the child inherits attribaibel behavior of the parent. As with two classes which pethe
same role, you may substitute a child class for its parerdnisense, a subclass provides the role implied by the egestef
its parent class.

Consider a class which provides two public attributes (and) and two methods (
and):

106

Objects

Recent experiments in role-based systems in Perl 5 denata#tat you can replace almost every use of inheritance
in a system with roles. The decision to use either one is kaggmatter of familiarity. Roles provide composition-
time safety, better type checking, better-factored ansldesipled code, and finer-grained control over names|and
behaviors, but inheritance is more familiar to users of ptheguages. The design question is whether one ¢lass
truly extendsanother or whether it provides additional (or, at led&teren) behavior.

package LightSource;

use Moose;
has candle_power, is => ro, isa = Int,
default => 1;
has enabled, is => ro, isa => Bool,
default => 0, writer => _set_enabled ;
sub light

my $self = shift;
$self->_set_enabled(1);
sub extinguish

my $self = shift;
$self->_set_enabled(0);

The option to the attribute creates a private accessor usable within the tdeset the value.

Inheritance and Attributes

Subclassing makes it possible to define a super candle which behavesatine svay as but
provides a hundred times the amount of light:

{
package LightSource::SuperCandle;

use Moose;
extends LightSource

has +candle_power, default => 100;

The function takes a list of class names to use as parents of thenticlass. The at the start of the

attribute name indicates that the current class extendgeasrides the declaration of the attribute. In this casestiper
candle overrides the default value of the light source, soremv created has a light value of 100 candles. The
other attribute and both methods are available on instances; when you invoke or on such an
instance, Perl will look in for the method, then in the list of parents of the class. Wtily it
finds them in

Attribute inheritance works in a similar way (see for details).

Method dispatch ordefsometimes writtemmethod resolution ordesr MRO) is easy to understand in the case of single-parent
inheritance. When a class has multiple parentsl{iple inheritancg dispatch is less obvious. By default, Perl 5 provides a
depth-first strategy of method resolution. It searchestass of thdirst named parent and all of its parents recursively before
searching the classes of the subsequent named parentbehiigor is often confusing; avoid using multiple inherita until

107

Modern Perl

you understand it and have exhausted all other alternatBess for more details about method resolution and
dispatch strategies.

Inheritance and Methods
You may override methods in subclasses. Imagine a lighyitatannot extinguish:

{
package LightSource::Glowstick;

use Moose;
extends LightSource ;
sub extinguish {}

}

All calls to the method for objects of this class will do nothing. Perl's naathdispatch system will find this
method and will not look for any methods of this name in anyhef parent classes.

Sometimes an overridden method needs behavior from itsipasewnell. The command tells Moose (and everyone
else reading the code) that the subclass deliberatelyidesrthe named method. The function is available to dispatch
from the overriding method to the overridden method:

{
package LightSource::Cranky;

use Carp;
use Moose;

extends LightSource ;
override light => sub
{

my $self = shift;

Carp::carp("Cant light a lit light source!")
if $self->enabled,;

super()
override extinguish => sub
{

my $self = shift;

Carp::carp("Cant extinguish an unlit light source!")
unless $self->enabled,

super()
}

This subclass adds a warning when trying to light or extislyu light source that already has the current state. The
function dispatches to the nearest parent's implememtatithe current method, per the normal Perl 5 method resolatider.

You can achieve the same behavior by using Moose method imidifSee

Inheritance and isa()

Inheriting from a parent class means that the child class#md its instances will return a true value when you call the
method on them:

say Looks like a LightSource if $sconce->isa(LightSour ce
say Monkeys do not glow unless $chimpy->isa(LightSourc e

_—

108

Objects

Moose and Perl 5 OO

Moose provides many features you'd otherwise have to buitd/durself with the default object orientation of Perl 5. \léhi
you canbuild everything you get with Moose yourself (see BlesseféRaces, page 110), or cobble it together with a series of
CPAN distributions, Moose is a coherent package which jusks; includes good documentation, is part of many sucakessf
projects, and is under active development by an attentiddalanted community.

By default, with Moose objects you do not have to worry abaurtstructors and destructors, accessors, and encapaulatio
Moose objects can extend and work with objects from the haRierl 5 system. You also getetaprogramming-a way

of accessing the implementation of the system through tk&esyitself—and the concomitant extensibility. If you'veeev
wondered which methods are available on a class or an ohjedhich attributes an object supports, this metaprogrargmin
information is available with Moose:

my $metaclass = Monkey::Pants->meta();

say Monkey::Pants instances have the attributes: ;
say $_->name for $metaclass->get_all_attributes;
say Monkey::Pants instances support the methods: ;

say $_->fully_qualified_name for $metaclass->get_all_m ethods;

You can even see which classes extend a given class:

my $metaclass = Monkey->meta();
say Monkey is the superclass of:;

say $_ for $metaclass->subclasses;

See for more information about metaclass operations and for Moose
metaprogramming information.

Moose and itsneta-object protocolor MOP) offers the possibility of a better syntax for detrigrand working with classes
and objects in Perl 5. This is valid Perl 5 code:

use MooseX::Declare;
role LivingBeing { requires qw(name age diet) }
role CalculateAge::From::BirthYear

has birth_year, is => ro, isa => Int,
default => sub { (localtime)[5] + 1900 };

method age

{
}

return (localtime)[5] + 1900 - $self->birth_year();

}

class Cat with LivingBeing with CalculateAge::From::Birt hyear

{
has name, is => ro, isa => Str;
has diet, is => rw;

}

The extension from the CPAN uses a clever module called to add new syntax to Perl

5, specifically for Moose. The , , and keywords reduce the amount of boilerplate necessary te\gdabd

object oriented code in Perl 5. Note specifically the dextlae nature of this example, as well as the now unnecessary
line at the start of the method.

One drawback of this approach is that you must be able tolir@BAN modules (or a custom Perl 5 distribution such as
Strawberry Perl or Strawberry Perl Professional which nmejuide them for you), but in comparison to Perl 5's core objec
orientation, the advantage in cleanliness and simplidityjl@ose should be obvious.

See for more information on using Moose.

109

Modern Perl

it

As of Perl 5.12, the Perl 5 core explicitly supports , but the module is not a core module and
works with earlier versions of Perl 5.

Blessed References

Perl 5's default object system is deliberately minimal.&ésimple rules combine to form the simple—though effectivasid
object system:

* Aclass is a package.
* A method is a function.
* A (blessed) reference is an object.

You've already seen the first two rules (see Moose, page. T0® third rule is new. The builtin associates the name of
a class with a reference, such that any method invocatidonpeed on that reference uses the associated class foutiesol
That sounds more complicated than it is.

The result is a minimal but working system, though its mirliema can be impractical for larger projects. In particuliue
default object system offers only partial and akward ftiesifor metaprogramming (see Code Generation, page 14i0)sé&/fis
a better choice for serious, modern Perl programs largeraltauple of hundred lines, but you will likely encounterdsaones
Perl 5 OO in existing code.

The default Perl 5 object constructor is a method which eseanhd blesses a reference. By convention, constructoesthav
name , but this is not a requirement. Constructors are also alalostysclass methods

sub new

{
my $class = shift;
bless {}, $class;

takes two arguments, the reference to associate with aatasthe name of a class. You may use outside of a
constructor or a class—though abstraction recommends ¢hefuse method. The class name does not have to exist yet.

By design, this constructor receives the class name as thi®dig invocant. It's possible, but inadvisable, to hantle the
name of a class directly. The parametric constructor ali@use of the method through inheritance, delegation, cortixg.

The type of reference makes no difference when invoking ottlon the object. It only governs how the object stametance
data—the object's own information. Hash references are most comtut you can bless any type of reference:

my S$array_obj = bless [], $class;
my $scalar_obj = bless \$scalar, $class;
my $sub_obj = bless \&some_sub, $class;

Whereas classes built with Moose define their own objedbatis declaratively, Perl 5's default OO is lax. A classesenting
basketball players which stores jersey number and positight use a constructor like:

package Player;
sub new
my ($class, %attrs) = @_;

bless \%attrs, $class;

...and create players with:

110

Objects

my $joel = Player->new(
number => 10,
position => center,

);

my $jerryd = Player->new(
number => 4,
position => guard,

Within the body of the class, methods can access hash elsiesttly:

sub format

{
my $self = shift;
return # . $self->{number} . plays . $self->{position}

Yet so can any code outside of the class. This violates entamsn—in particular, it means that you can never change the
object's internal representation without breaking exaéicode or perpetuating ugly hacks—so it's safer to provideessor
methods:

sub number { return shift->{number} }
sub position { return shift->{position} }

Even with two attributes, Moose is much more appealing imgof code you don't have to write.

Moose's default behavior of accessor generation encoanageto do the right thing with regard to encapsulatjon
as well as genericity.

Method Lookup and Inheritance
Besides instance data, the other part of objects is mettapaidih. Given an object (a blessed reference), a methodfdak
form:

my $number = $joel->number();

...looks up the name of the class associated with the bles$exdtnce . In this case, the class is . Next, Perl
looks for a function named in the package. If the class inherits from another class, Perl looks in the
parent class (and so on and so on) untilitfindsa method. If one exists, Perl calls it with as an invocant.

Moose classes store their inheritance information in a metkel which provides additional abilities on top of Perl 8&fault
OO system.

In the default system, every class stores information alteytarents in a package global variable named . The method
dispatcher looks in a class's to find the names of parent classes in which to search forgpeoariate method. Thus, an
class might contain inits . You could write this relationship as:

package InjuredPlayer;

@InjuredPlayer::ISA = Player;

Many existing Perl 5 projects do this, but it's easier andm@énto use the pragma instead:

package InjuredPlayer;

use parent Player;

111

Modern Perl

Perl 5.10 added to supersede the pragma. If you can't use Moose, use

You may inherit from multiple parent classes:

package InjuredPlayer;

use parent qw(Player Hospital::Patient);

Perl 5 has traditionally preferred a depth-first searchemépts when resolving method dispatch. That is to say, if
inherits from both and , @ method call on an instance will dispatch first to
, then , then any of 's parents before dispatching in

Perl 5.10 also added a pragma called which allows you to use a different method resolution schealled C3. While the
specific details can get complex in the case of complex plalthheritance hierarchies, the important differencéas tmethod
resolution will visit all children of a parent before visitj the parent.

While other techniques such as roles (see Roles, page 105)@rsk method modifiers allow you to avoid multiple inhenita,
the pragma can help avoid surprising behavior with method dipdnable it in your class with:

package InjuredPlayer;

use mro c3;

Unless you're writing a complex framework with multiple @mbperable plugins, you likely never need to use this.

AUTOLOAD
If there is no applicable method in the invocant's class graits superclasses, Perl 5 will next look for an function
in every class according to the selected method resolutideroPerl will invoke any (see AUTOLOAD, page 85) it

finds to provide or decline the desired method.

As you might expect, this can get quite complex in the face witipie inheritance and multiple potential targets.

Method Overriding and SUPER

You may override methods in the default Perl 5 OO system ab agein Moose. Unfortunately, core Perl 5 provides no
mechanism for indicating yountentto override a parent's method. Worse yet, any function yadeclare, declare, or import
into the child class may override a method in the parent damply by existing and having the same name. While you may
forget to use the system of Moose, you have no such protection (even optioméhe default Perl 5 OO system.

To override a method in a child class, declare a method ofaheesname as the method in the parent. Within an overridden
method, call the parent method with the dispatch hint:

sub overridden

{
my $self = shift;
warn "Called overridden() in child!";
return $self->SUPER::overridden(@_);

The prefix to the method name tells the method dispatcher taatii$pto the named method irparentimplementa-
tion. You may pass any arguments to it you like, but it's sefeseuse

112

Objects

Beware that this dispatcher relies on the package into whigloverridden method was originally compiled when
redispatching to a parent method. This is a long-standirgfeaiure retained for the sake of backwards compati-
bility. If you export methods into other classes or compases into classes manually, you may run afoul of this
feature. The module on the CPAN can work around this for you. Moose hantlgsely as well.

Strategies for Coping with Blessed References

Avoid where possible. If yomustuse it, use forward declarations of your functions (see &ew Functions, page
63) to help Perl know which will provide the method implementation.

Use accessor methods rather than accessing instance matéydhrough the reference. This applies even within theids of
methods within the class itself. Generating these youcselfbe tedious; if you can't use Moose, consider using a necsluth
as to avoid repetitive boilerplate.

Expect that someone, somewhere will eventually need tdast(or delegate to or reimplement the interface of) yoassss.
Make it easier for them by not assuming details of the interofiyour code, by using the two-argument form of |, and
by breaking your classes into the smallest responsibls ohitode.

Do not mix functions and methods in the same class.
Use a singlepmfile for each class, unless the class is a small, self-coathhelper used from a single place.

Consider using Moose and instead of bare-bones Perl 5 OO; they can interact with laoidsses and objects
with ease, alleviate almost of the tedium of declaring @asand provide more and better features.

Reflection

Reflection(or introspection is the process of asking a program about itself as it runenEvough you can write many useful
programs without ever having to use reflection, technicueh as metaprogramming (see Code Generation, page 14fitben
from a deeper understanding of which entities are in theegyst

(see Class::MOP, page 144) simplifies many reflectiongdskobject systems, but many useful programs do not
use objects pervasively, and many useful programs do not use . Several idioms exist for using reflection effectively
in the absence of such a formal system. These are the most@omm

Checking that a Package Exists

To check that a package exists somewhere in the system—tlifsdasne code somewhere has executed a directive
with a given name—check that the package inherits from by testing that the package somehow provides the
method:

say "$pkg exists" if eval { $pkg->can(can) };

Although youmayuse packages with the nameand 2°, the method will throw a method invocation exception if you
use them as invocants. The block catches such an exception.

You couldalso grovel through the symbol table, but this approach iskgu and easier to understand.

Checking that a Class Exists

Because Perl 5 makes no strong distinction between paclkageslasses, the same technique for checking the existéace o
package works for checking that a class exists. There is nergeway for determining if a package is a class. tam check
that the package provide , but there is no guarantee thatany found is a method, nor a constructor.

29 only if you define them symbolically, as these awe identifiers forbidden by the Perl 5 parser.

113

Modern Perl

Checking that a Module Has Loaded

If you know the name of a module, you can check that Perl besiéhas loaded that module from disk by looking in the
hash. This hash corresponds to ; when Perl 5 loads code with or , it stores an entry in where the key is
the file path of the module to load and the value is the fulhpat disk to that module. In other words, loading

effectively does:

$INC{ Modern/Perl.pm} =
Ipath/to/perl/lib/site_perl/5.12.1/Modern/Perl.pm

The details of the path will vary depending on your instéat but for the purpose of testing that Perl has succegdfdided
a module, you can convert the name of the module into the d¢ealdite form and test for existence within

sub module_loaded

(my $modname = shift) =~ sl:l/lg;
return exists $INC{ $modname . .pm };

Nothing prevents other code from manipulating itself. Depending on your paranoia level, you may check #ta pnd the
expected contents of the package yourself. Some modulel &su or) manipulate
for good reasons. Code which manipulates for poor reasons deserves replacing.

Checking the Version of a Module

There is no guarantee that a given module provides a verSi@n so, all modules inherit from (see The UNI-
VERSAL Package, page 139), so they all have a method available:

my $mod_ver = $module->VERSION();

If the given module does not override or contain a package variable , the method will return an undefined
value. Likewise, if the module does not exist, the methotveiil fail.

Checking that a Function Exists

The simplest mechanism by which to determine if a functiastexs to use the method on the package name:

say "$func() exists" if $pkg->can($func);

Perl will throw an exception unless is a valid invocant; wrap the method call in an block if you have any doubts
about its validity. Beware that a function implemented imte of (see AUTOLOAD, page 85) may report the
wrong answer if the function's package does not also overrid correctly. This is a bug in the other package.

You may use this technique to determine if a module's has imported a function into the current namespace:

say "$func() imported!" if _ PACKAGE__->can($func);

You may also root around in the symbol table and typeglobgterchine if a function exists, but this mechanism is simpted
easier to explain.

Checking that a Method Exists

There is no generic way to determine whether a given fundsam function or a method. Some functions behave as both
functions and methods; though this is overly complex andilisa mistake, it is an allowed feature.

114

Objects

Rooting Around in Symbol Tables

A Perl 5 symbol table is a special type of hash, where the keyysh® names of package global symbols and the values are
typeglobs. Atypeglobis a core data structure which can contain any or all of a gcataarray, a hash, a filehandle, and a
function. Perl 5 uses typeglobs internally when it looks hgse variables.

You can access a symbol table as a hash by appending doubresto the name of the package. For example, the symbol table
for the package is available as

You cantest the existence of specific symbol names within a syndigetwith the operator (or manipulate the symbol
table toadd or removesymbols, if you like). Yet be aware that certain changes ¢dRérl 5 core have modified what exists by
default in each typeglob entry. In particular, earlier \@ns of Perl 5 have always provided a default scalar varitdlevery
typeglob created, while modern versions of Perl 5 do not.

See the “Symbol Tables” section in for more details, then prefer the other techniques in thisice for
reflection.

Advanced OO Perl

Creating and using objects in Perl 5 with Moose (see Mooggs p80) is easyesigninggood object systems is not. Additional
capabilities for abstraction also offer possibilities édafuscation. Only practical experience can help you uridedsthe most
important design techniques. . . but several principlesgeade you.

Favor Composition Over Inheritance

Novice OO designs often overuse inheritance for two reastonseuse as much code as possible and to exploit as much
polymorphism as possible. It's common to see class hieiesalihich try to model all of the behavior for entities withthme
system in a single class. This adds a conceptual overheaaderatanding the system, because you have to understand the
hierarchy. It adds technical weight to every class, becaosdlicting responsibilities and methods may obstructessary
behaviors or future modifications.

The encapsulation provided by classes offers better wagsgmize code. You don't have to inherit from superclassgsd-
vide behavior to users of objects. A object does not have to inherit from a object (aris-a relationship;
it can contain several objects as instance attributesh@s-a relationship

Decomposing complex classes into smaller, focused enfitibether classes or roles) improves encapsulation andesdhe
possibility that any one class or role will grow to do too mugmaller, simpler, and better encapsulated entities aierc®
understand, test, and maintain.

Single Responsibility Principle

When you design your object system, model the problem in tefmssponsibilities, or reasons why each specific entity ma
need to change. For example, an object may represent specific information about a persmarse, contact informa-
tion, and other personal data, while a object may represent business responsibilities. A simpsgth might conflate the
two into a single entity, but separating them allows the class to consider only the problem of managing information
specific to who the person is and the class to represent what the person does. (Two may have a -sharing
arrangement, for example.)

When each class has a single responsibility, you can imph®vericapsulation of class-specific data and behaviorseahite
coupling between classes.

Don't Repeat Yourself

Complexity and duplication complicate development andntesiance activities. The DRY principle (Don't Repeat Yali)s
is a reminder to seek out and to eliminate duplication withmsystem. Duplication exists in many forms, in data as aslh
code. Instead of repeating configuration information rasa, and other artifacts within your system, find a singéonical
representation of that information from which you can gatesall of the other artifacts.

115

Modern Perl

This principle helps to reduce the possibility that impottaarts of your system can get unsynchronized, and helpsoyind
the optimal representation of the system and its data.

Liskov Substitution Principle

The Liskov substitution principle suggests that subtypfes given type (specializations of a class or role or subelsiss a
class) should be substitutable for the parent type withaatowing the types of data they receive or expanding thestyie
data they produce. In other words, they should be as geremlraore general at what they expect and as specific as or more
specific about what they produce.

Imagine two classes, and . The latter subclasses the former. If the classes followLtbkov substitution
principle, you can replace every use of objects with objects in the test suite, and everything should {ass

Subtypes and Coercions

Moose allows you to declare and use types and extend themgihrgubtypes to form ever more specialized descriptions of
what your data represents and how it behaves. You can usetimsannotations to verify that the data on which you want to
work in specific functions or methods is appropriate ancheieespecify mechanisms by which to coerce data of one type to
data of another type.

See and for more information.

Immutability

A common pattern among programmers new to object oriem&gito treat objects as if they were bundles of records whéeh u
methods to get and set internal values. While this is simplmpdement and easy to understand, it can lead to the unfatéun
temptation to spread the behavioral responsibilities amiodividual classes throughout the system.

The most useful technique to working with objects effedtivs to tell them what to do, not how to do it. If you find youte
accessing the instance data of objects (even through acaesshods), you may have too much access to the respotiegili
of the class.

One approach to preventing this behavior is to considerctdbps immutable. Pass in all of the relevant configuratiata do
their constructors, then disallow any modifications obthiformation from outside the class. Do not expose any nustho
mutate instance data.

Some designs go as far as to prohibit the modification ofimsg datavithin the class itself, though this is much more dif cult
to achieve.

30See Reg Braithwaite's "IS-STRICTLY-EQUIVALENT-TO-A" for more details,

116

Style and Ef cacy

Programming and programmirgell are related, but distinct skills. If we only wrote progranmce and never had to modify

or maintain them, if our programs never had bugs, if we neadrtb choose between using more memory or taking more time,
and if we never had to work with other people, we wouldn't hevavorry about how well we program. To program well, you
must understand the differences between potential sokibased on specific priorities of time, resources, anddylans.

Writing Perl well means understanding how Perl works. It afssans developing a sense of good taste. To develop that skill
you must practice writing and maintaining code and readingdgcode. There are no shortcuts—but you can improve the
effectiveness of your practice by following a few guidebne

Writing Maintainable Perl

The easier your program is to understand and to modify, thterbd his ismaintainability Set aside your current program
for six months, then try to fix a bug or add a feature. The moaéntainable the code, the less artificial complexity yodi wi
encounter making changes.

To write maintainable Perl you must:

* Remove duplicationPerl offers many opportunities to use abstraction to reduak remove duplication. Functions,
objects, roles, and modules, for example, allow you to @efirodels of the problem and your solution.

The more duplication in your system, the more work it is to eakecessary change, and the more likely you will forget
to make a change in every place necessary. The less dupli¢atyour system, the more likely you've found an effective
design for your problem. The best designs allow you to adtlifea while removing code overall.

* Name entities welEverything you can name in your system—functions, classethads, variables, modules—can aid
or hinder clarity. The ease with which you can name thesegientieveals your understanding of the problem and the
cohesion of your design. Your design tells a story, and ewanyg you use effectively can help you remember that story
when you must later maintain the code.

» Avoid unnecessary clevernedfvices sometimes mistake cleverness for concision. Germde avoids unnecessary
complexity. Clever code sometimes prefers its own clevese simplicity. Perl offers many approaches to solve simil
problems. One form may be more readable to your team. Anathgibe faster. A third may be simpler. Where possible,
optimize for obviousness first.

You can't always avoid the dark corners of Perl, and somelprob require cleverness to solve effectively. Only good
taste and experience will help you evaluate the appropléatd of cleverness. As a rule of thumb, if you're prouder
of explaining your solution to your coworkers than you aresofving a problem, your code may have unnecessary
complexity.
If you doneed clever code, encapsulate it behind a simple interfastel@cument your cleverness very well.

* Embrace simplicityGiven two programs which solve the same problem, the sirhig@most always easier to maintain.

Simplicity doesn't require you to eschew advanced Perl kadge, or to avoid using libraries, or to pound out hundreds
of lines of procedural code.

Simplicity means that you've solved the problem at handatiffely without adding anything you don't need. This is no
excuse to avoid error checking or verification or validatay security. Instead it's a reminder to think about whagally
important. Sometimes you don't need frameworks, or objextsomplex data structures. Sometimes you do. Simplicity
means knowing the difference.

117

Modern Perl

Writing Idiomatic Perl

Perl steals ideas from other languages as well as from tleewetld outside of programming. Perl tends to claim thesasde
by making them Perlish. To write Perl well, you must know hoyperienced Perl programmers write it.

¢ Understand community wisdofihe Perl community often debates techniques, sometimele Yet even these dis-
agreements offer enlightenment on specific design trdslaofd styles. You know your specific needs, but CPAN authors
CPAN developers, your local Perl Mongers group, and othagiammers have experience solving similar problems. Talk
to them. Read their public code. Ask questions. Learn froemtland let them learn from you.

e Follow community normsThe Perl community isn't always right, especially if yourews are very specific or unique,
but it works continually to solve problems as broadly as fbssPerl's testing and packaging tools work best when you
organize your code as if you were to distribute it on the CPAtNbpt the standard approaches to writing, documenting,
packaging, testing, and distributing your code, to takeaathge of these tools.

Similarly, CPAN distributions such as and and can make your work simpler
and easier.

« Read codeJoin in a mailing list such as the Perl Beginners list (),
browse PerlMonks (), and otherwise immerse yourself in the Perl Commhityou'll have

plenty of opportunities to see how other people solve theblems, good and bad. Learn from the good (it's often
obvious) and the bad (to see what to avoid).

Writing a few lines of code to solve a problem someone elsespdsta great way to learn.

Writing Effective Perl

Knowing Perl's syntax and semantics is only the beginnirau ¥an only achieve good design if you follow habitetecourage
good design.

« Write testable codePerhaps the best way to ensure that you can maintain codavitécan effective test suite. Writing
test code well exercises the same design skills as designimgams well; never forget that test code is still code.rEve
S0, a good test suite will give you confidence that you canifg@program and not break existing behaviors you care
about.

« Modularize.Break your code into individual modules to enforce encagisut and abstraction boundaries. Make a habit
of this and you'll recognize individual units of code whicb tbo many things. You'll identify multiple units that work
too tightly together.

Modularity also forces you to manage different levels oftedugion; you must consider how the entities of your sys-
tem work together. There's no better way to learn the valuahstraction than having to revise systems into effective
abstractions.

» Take advantage of the CPANhe single best force multiplier for any Perl 5 program is éineazing library of reusable
code available for anyone to use. Thousands of developes etten tens of thousands of modules to solve more
problems than you can imagine, and the CPAN only continuegda. Community standards for documentation, for
packaging, for installation, and for testing contributeétte quality of the code, and the CPAN's centrality in modeenl P
has helped the Perl community grow in knowledge, in wisdamd, ia ef cacy.

Whenever possible, search the CPAN first—and ask your feltmwmunity members—for advice on solving your prob-
lems. You may even report a bug, or submit a patch, or prodogeagwn distribution on the CPAN. Nothing demonstrates
you're an effective Perl programmer more than helping offeaple solve their problems.

 Establish sensible coding standardsfective guidelines establish policies for error hanglisecurity, encapsulation,
API design, project layout, and other maintainability cems. Excellent guidelines evolve as you and your team under
stand each other and your projects better. The goal of pmogiag is to solve problems, and the goal of coding standards
is to help you communicate your intentions clearly.

31See for more links.

118

Style and Ef cacy

Exceptions

Programming would be simpler if everything always workedh#snded. Unfortunately, files you expect to exist dontings-
times you run out of disk space. Your network connectionstaes. The database stops accepting new data.

Exceptional cases happen, and robust software must hdnudle €éxceptional conditions. If you can recover, greatbif gan't,
sometimes the best you can do is retry or at least log all of¢levant information for further debugging. Perl 5 handles
exceptional conditions through the useesteptionsa dynamically-scoped form of control flow that lets you dbmerrors in
the most appropriate place.

Throwing Exceptions

Consider the case where you need to open a file for loggingufcannot open the file, something has gone wrong. Use
to throw an exception:

sub open_log_file

{
my $name = shift;
open my $fh, >>, $name
or die "Cant open logging file $name: $!";
return $fh;

sets the global variable to its argument and immediately exits the current functigthout returning anythinglf the
calling function does not explicitly handle this exceptitime exception will propagate upwards to every caller watihething
handles the exception or the program exits with an error agess

This dynamic scoping of exception throwing and handlindies$ame as the dynamic scoping of ~ symbols
(see Dynamic Scope, page 74).

Catching Exceptions

Uncaught exceptions eventually terminate the program.efiomes this is useful; a system administration program ramf
cron (a Unix jobs scheduler) might throw an exception whendfror logs have filled; this could page an administratat th
something has gone wrong. Yet many other exceptions shauldenfatal; good programs can recover from them, or at least
save their state and exit more cleanly.

To catch an exception, use the block form of the operator:

log file may not open
my $th = eval { open_log_file(monkeytown.log) };

As with all blocks, the block argumentto introduces a new scope. If the file open succeedswill contain the filehandle.

If it fails, will remain undefined, and Perl will move on to the next sta¢at in the program.

If called other functions which called other functions, arahié of those functions threw its own exception,
this could catch it, if nothing else did. There is no requireméat tyour exception handlers catch only those exceptions
you expect.

To check which exception you've caught (or if you've caughtexception at all), check the value of:

log file may not open

my $fh = eval { open_log_file(monkeytown.log) };

caught exception

it @) { ... }

Of course, is aglobalvariable. For optimal safety, ize its value before you attempt to catch an exception:

119

Modern Perl

local $@;

log file may not open
my $fh = eval { open_log_file(monkeytown.log) };

caught exception

if @) { ... }

You may check the string value of against expected exceptions to see if you can handle thetxeer if you should throw
it again:

if (my $exception = $@)

{

die $exception unless $exception =~ /*Cant open logging fi le/;
$fh = log_to_syslog();

Copy to to avoid the possibility of subsequent code clobbering thbaj variable . You never
know what else has used an block elsewhere and reset.

Rethrow an exception by calling again, passing .

You may find the idea of using regular expressions agairestwiue of distasteful; you can also use abjectwith .
Admittedly, this is rare. cancontain any arbitrary reference, but in practice it seenist®5% strings and 5% objects.

As an alternative to writing your own exception system, $eeG@PAN distribution

Exception Caveats
Using correctly can be tricky; the global nature of the variabkvks it open to several subtle flaws:

« Un ized uses further down the dynamic scope may reset its value

* The destruction of any objects at scope exit from exceptioowing may call and change its value
* It may contain an object which overrides its boolean vatuesturn false

¢ A signal handler (especially the signal handler) may change its value when you do not expect it

Writing a perfectly safe and sane exception handler is dif.cthe distribution from the CPAN is short, easy to
install, easy to understand, and very easy to use:

use Try:Tiny;
my $th = try { open_log_file(monkeytown.log) }

catch { ... };

Not only is the syntax somewhat nicer than the Perl 5 defauttthe module handles all of those edge cases for you without
your knowledge.

Built-in Exceptions
Perl 5 has several exceptional conditions you can catchamith block. lists them as “trappable fatal
errors”. Most are syntax errors thrown during compilati@thers are runtime errors. Some of these may be worth caftchin
syntax errors rarely are. The most interesting or likelyeptions occur for:

» Using a disallowed key in a locked hash (see Locking Haghease 46)

 Blessing a non-reference (see Blessed References, page 11

* Calling a method on an invalid invocant (see Moose, pagé 100

120

Style and Ef cacy

Failing to find a method of the given name on the invocant
» Using a tainted value in an unsafe fashion (see Taint, pdgg 1

Modifying a read-only value
e Performing an invalid operation on a reference (see Refex® page 50)

If you have enabled fatal lexical warnings (see RegisteYimgr Own Warnings, page 128), you can catch the exceptiays th
throw. The same goes for exceptions from (see The autodie Pragma, page 167).

Pragmas

Perl 5's extension mechanism is modules (see Modules, pagp Most modules provide functions to call or they define
classes (see Moose, page 100), but some modules instaaehicdl the behavior of the language itself.

A module which influences the behavior of the compiler ipragma By convention, pragmas have lower-case names to
differentiate them from other modules. You've heard of sdefore: and , for example.

Pragmas and Scope

A pragma works by exporting specific behavior or informatiato the enclosing static scope. The scope of a pragma is the
same as the scope of a lexical variable. In a way, you can tifitéxical variable declaration as a sort of pragma with funn
syntax. Pragma scope is clearer with an example:

{
S$lexical is not visible; strict is not in effect
{ _
use strict;
my $lexical = available here;
$lexical is visible; strict is in effect

$lexical is again not visible; strict is not in effect

A suf ciently motivated Perl guru could implement a pooithghaved pragma which ignores scoping, but that
would be unneighborly.

Just as lexical declarations affect inner scopes, so dov@agnaintain their effects on inner scopes:

file scope
use strict;

{

inner scope, but strict still in effect
my $inner = another lexical ;

Using Pragmas

Pragmas have the same usage mechanism as modules. As witlemygeu may specify the desired version number of the
pragma and you may pass a list of arguments to the pragma twtids) behavior at a finer level:

require variable declarations; prohibit bareword functi on names
use strict qw(subs vars);

Within a scope you may disable all or part of a pragma with théuiltin:

121

Modern Perl

use strict;

{

get ready to manipulate the symbol table
no strict refs;

Useful Core Pragmas
Perl 5 includes several useful core pragmas:

* the pragma enables compiler checking of symbolic referendesuse of barewords, and the declaration of
variables

* the pragma enables optional warnings for deprecated, uniatbrashd awkward behaviors that are netes-
sarily errors but may produce unwanted behaviors

* the pragma enables the use of the UTF-8 encoding of source code

* the pragma (new in 5.10.1) enables automatic error checkingstém calls and builtins, reducing the need for
manual error checking

* the pragma allows you to create compile-time constant valuesuth see from the CPAN for an
alternative)

e the pragma allows you to declare package global variables,asich or those for exporting (see Exporting,

page 136) and manual OO (see Blessed References, page 110)

Several useful pragmas exist on the CPAN as well. Two worfsloging in detail are , Which enables object-like
behavior for Perl 5's core types (scalars, referencesysrand hashes) and , which combines and enables many
experimental language extensions into a coherent wholesdiwo pragmas may not belong yet in your production code
without extensive testing and thoughtful consideratiarn,tbey demonstrate the power and utility of pragmas.

Perl 5.10.0 added the ability to write your own lexical pragnmn pure Perl code. explains how to do
so, while the explanation of in explains how the feature works.

122

Managing Real Programs
Writing simple example programs to solve example problenasiook helps you learn a language in the small. Yet writing rea
programs requires more than learning the syntax of a lareguagts design principles, or even how to find and use itsliles.

Practical programming requires you to manage code: to argdnto know that it works, to make it robust in the face afoes
of logic or intent, and to do all of this in a concise, cleargdanaintainable fashion. Fortunately, modern Perl providesy
tools and techniques to write real programs—from testingp¢oorganization of your source code.

Testing

Testingis the process of writing and running automated verificgadithat your software behaves as intended, in whole or in
part. At its heart, this is an automation of a process you&ggmed countless times already: write a bit of code, ruaritl see

if it works. The difference is in thautomation Rather than relying on humans to perform each manual ched&gily every
time, let the computer handle the repetition.

Perl 5 provides great tools to help you write good and useftdraated tests.

Test::More

Perl testing begins with the core module and its function. takes two parameters, a boolean value and
a string describing the purpose of the test:

ok(1, the number one should be true);

ok(0, ... and the number zero should not);
ok(, the empty string should be false);
ok(!, .. and a non-empty string should not);

Ultimately, any condition you can test for in your progranoshl become a binary value. Does the code work as | intended?
A complex program may have thousands of these individuadlitions. In general, the smaller the granularity the beftee
purpose of writing individual assertions is to isolate indual features to understand what doesn't work as you dedrand
what ceases to work after you make changes in the future.

This snippet isn't a complete test script, however. and related modules require the use dkat plan which
represents the number of individual tests you plan to run:

use Test:More tests => 4;

ok(1, the number one should be true);

ok(0, .. and the number zero should not);

ok(, the empty string should be false);

ok(!, .. and a non-empty string should not);

The argument to sets the test plan for the program. This gives the test aniadali assertion. If fewer than

four tests ran, something went wrong. If more than four testssomething went wrong. That assertion is unlikely to deful
in this simple scenario, but @ancatch bugs in code that seems too simple to have éfrors

32As a rule, any code you brag about being too simple to contaimsewill contain errors at the least opportune moment.

123

Modern Perl

You don't have to provide as an argument. At the end of your test program, call the
function . While a plan at the start with a fixed number of tests can yéhiat you ran only the
expected number of tests, sometimes it's dif cult or paltéuwerify that number. In those cases,

verifies that the test program completed successfully—uetise, how would yotknow?

Running Tests

The resulting program is now a full-fledged Perl 5 progranichtproduces the output:

1.4

ok 1 - the number one should be true

not ok 2 - ... and the number zero should not

Failed test ... and the number zero should not
at truth_values.t line 4.

not ok 3 - the empty string should be false

Failed test the empty string should be false

at truth_values.t line 5.

ok 4 - ... and a non-empty string should not

Looks like you failed 2 tests of 4.

This format adheres to a standard of test output callkel, the Test Anything Protocq(). As
part of this protocol, failed tests produce diagnostic ragss. This is a tremendous aid to debugging.

The output of a test file containing multiple assertiongéesally multiplefailed assertions) can be verbose. In most cases,

you want to know either that everything passed or that x, ¢, zafailed. The core module interprets TAP and
displays only the most pertinent information. It also po®s a program called which takes the hard work out of the
process:

$ prove truth_values.t

truth_values.t .. 1/4

Failed test ... and the number zero should not
at truth_values.t line 4.

Failed test the empty string should be false

at truth_values.t line 5.

Looks like you failed 2 tests of 4.

truth_values.t .. Dubious, test returned 2 (wstat 512, 0x20 0)
Failed 2/4 subtests

Test Summary Report

truth_values.t (Wstat: 512 Tests: 4 Failed: 2)
Failed tests: 2-3

That's a lot of output to display what is already obvious: #ezond and third tests fail because zero and the empty string
evaluate to false. It's easy to fix that failure by invertitite sense of the condition with the use of boolean coerciea (s
Boolean Coercion, page 47):

ok(! 0, ... and the number zero should not);
ok(! , the empty string should be false);
With those two changes, now displays:

$ prove truth_values.t
truth_values.t .. ok
All tests successful.

124

Managing Real Programs

Better Comparisons

Even though the heart of all automated testing is the booteaition “is this true or false?”, reducing everything tat
boolean condition is tedious and offers few diagnostic jbdgses. provides several other convenient functions
to ensure that your code behaves as you intend.

The function compares two values using theoperator. If the values are equal, the test passes. Otleerthis test fails
and provides a relevant diagnostic message:

is(4, 2 + 2, addition should hold steady across the universe
is(pancake, 100, pancakes should have a delicious numer ic value);

As you might expect, the first test passes and the secorgd fail

t/lis_tests.t .. 1/2

Failed test pancakes should have a delicious numeric valu e
at t/is_tests.t line 8.

got: pancake

expected: 100

Looks like you failed 1 test of 2.

Where only provides the line number of the failing test, displays the mismatched values.
applies implicit scalar context to its values. This meansgikample, that you can check the number of elements in an
array without explicitly evaluating the array in scalar tat:

my @cousins = qw(Rick Kristen Alex Kaycee Eric Corey);
is(@cousins, 6, | should have only six cousins);

...though some people prefer to write for the sake of clarity.

provides a corresponding function which passes if the provided values are not equabgaling to the
operator). Otherwise, it behaves the same way as with respect to scalar context and comparison types.

Both and applystring comparisonsvith the Perl 5 operators and . This almost always does the right thing,
but for complex values such as objects with overloading ®e=rloading, page 145) or dual vars (see Dualvars, page/d8),
may prefer explicit comparison testing. The function allows you to specify your own comparison operator

cmp_ok(100, $cur_balance, <=, | should have at least $10 0)
cmp_ok($monkey, $ape, ==, Simian numifications should agree);

Classes and objects provide their own interesting waystavant with tests. Test that a class or object extends anolhies
(see Inheritance, page 106) with

my $chimpzilla = RobotMonkey->new();
isa_ok($chimpzilla, Robot);
isa_ok($chimpzilla, Monkey);

provides its own diagnostic message on failure.
verifies that a class or object can do the requested methoddthods):

can_ok($chimpzilla, eat_banana);
can_ok($chimpzilla, transform, destroy tokyo);

The function compares two references to ensure that their nthére equal:
use Clone;
my $numbers = [4, 8, 15, 16, 23, 42];

my $clonenums = Clone::clone($numbers);

is_deeply($numbers, $clonenums,
Clone::clone() should produce identical structures);

125

Modern Perl

If the comparison fails, will do its best to provide a reasonable diagnostic indigatine position of the first
inequality between the structures. See the CPAN modules and for more configurable tests.

has several more test functions, but these are the most.usefu

Organizing Tests

testing; testing; CPAN's infrastructure and ecosystemeeipdistributions to include @ containing one or more test files
named with thet suf x. By default, when you build a distribution with or , the
testing step runs all of thi*.t files, summarizes their output, and succeeds or fails omabelts of the test suite as a whole.
There are no concrete guidelines on how to manage the cerdkimdividual.t files, though two strategies are popular:

 Each.t file should correspond to @mfile

» Each.t file should correspond to a feature

The important considerations are maintainability of trst fites, as larger files are more dif cult to maintain thanaller files,
and the granularity of the test suite. A hybrid approachéstiost flexible; one test can verify that all of your modulespile,
while other tests verify that each module behaves as intende

It's often useful to run tests only for a specific feature andevelopment. If you're adding the ability to breathe fiveyour
, You may want only to run thébreathe_fire.test file. When you have the feature working to your satiséact
run the entire test suite to verify that local changes haveniotended global effects.

Other Testing Modules

relies on a testing backend known as . The latter module manages the test plan and coordinates
the test output into TAP. This design allows multiple testdmes to share the same backend. Consequently,
the CPAN has hundreds of test modules available—and theylloaor& together in the same program.

. provides functions to ensure that your code throws (and doethrow) exceptions appropriately.

. and allow you to test dif cult interfaces bynocking(emulating but producing
different results).

. allows you to test live web applications.

. provides functions to test the use and abuse of databases.

. offers an alternate mechanism for organizing test suitegldws you to create classes in which specific
methods group tests. You can inherit from test classes pistoar code classes inherit from each other. This is an
excellent way to reduce duplication in test suites. See the series written by Curtis Poe at

. tests strings and data structures for equality and disglaygifferences in its diagnostics.

. tests the equivalence of nested data structures (see Nestedbtructures, page 55).

. analyzes the execution of your test sulite to report on theuairad your code your tests actually exercises.

In general, the more coverage the better—though 100% cowésampt always possible, 95% is far better than 80%.

The Perl QA project () is a primary source of test modules as well as wisdom andipahexperience
making testing in Perl easy and effective.

Handling Warnings

Perl 5 produces optional warnings for many confusing, warciend ambiguous situations. Even though you should aledost
ways enable warnings unconditionally, certain circumstardictate prudence in disabling certain warnings—andsepgorts
this.

126

Managing Real Programs

Producing Warnings

Use the builtin to emit a warning:

warn Something went wrong! ;

prints a list of values to the STDERR filehandle (see Input @utput, page 129). Perl will append the filename and line
number on which the call occurred unless the last element of the list ends in dinew

The core module offers other mechanisms to produce warnings. Its function reports a warning from the perspec-
tive of the calling code. That is, you could check the aritydéinction (see Arity, page 59) with:

use Carp;
sub only_two_arguments

my ($lop, $rop) = @_;
Carp::carp(Too many arguments provided) if @_ > 2;

...and anyone who reads the error message will receive ltrafne and line number of thealling code, not
. Similarly, 's produces an entire backtrace of all function calls up to tireemt function.

To track down weird warnings or exceptions throughout yystesm, enable 's verbose mode throughout the entire pro-
gram:

$ perl -MCarp=verbose my_prog.pl

This changes all (and —see Reporting Errors, page 67) calls to include a backtk&ben you organize your
code into modules (see Modules, page 134), use Carp instead oor to save debugging time.

Enabling and Disabling Warnings

Lexical encapsulation of warnings is as important as lé>@oaapsulation of variables. Older code may use theommand-

line argument to enable warnings throughout the prograem éwther code has not specifically attempted to suppress-w
ings. It's all or nothing. If you have the wherewithal to elimate warnings and potential warnings throughout the ewtide-

base, this can be useful.

The modern approach is to use the pragmd®, which indicates the intent of the author of the code thatabr
operation should not produce warnings.

The flag enables warnings throughout the program unilateraflgardless of lexical enabling or disabling

through the pragma. The flag disableswarnings throughout the program unilaterally. Neither is
common.
Allof , ,and affectthe value of the global variable . Code written before the pragma (Perl 5.6.0 in spring
2000) may ize to suppress certain warnings within a given scope. New chdelg use the pragma instead.

Disabling Warning Categories

To disable selective warnings within a scope, use with an argument list. Omitting the argument list disabliés a
warnings within that scope.

33, or an equivalent such as

127

Modern Perl

lists all of the warnings categories your version of Perl Senstands with the pragma.
Most of them represent truly interesting conditions whiahmlPnay find in your program. A few may be unhelpful in specifi
conditions. For example, the warning will occur if Perl detects that a function has calitsélf more than a hundred

times. If you are confident in your ability to write recursi@nding conditions, you may disable this warning withia stope
of the recursion (though tail calls may be better; see TdisCpage 70).

If you're generating code (see Code Generation, page 144galty redefining symbols, you may wish to disable the
warnings.

Some experienced Perl hackers disable the value warnings in string-processing code which concagsnat
values from many sources. Careful initialization of valésbcan avoid the need to disable the warning, but local styte
concision may render this warning moot.

Making Warnings Fatal
If your project considers warnings as onerous as errors,caoumake them lexically fatal. To promo#éd warnings into
exceptions:

use warnings FATAL => all;

You may also make specific categories of warnings fatah siscthe use of deprecated constructs:

use warnings FATAL => deprecated ;

Catching Warnings

Just as you can catch exceptions, so you can catch warnihgs. T variablé* holds handlers for all sorts of signals Perl or
your operating system might throw. It also includes tw0$fot signal handlers for Perl 5 exceptions and warnings.afoica
warning, install an anonymous function into

my $warning;
local $SIG{__WARN__} = sub { $warning .= shift };

do something risky

say "Caught warning:\n$warning" if $warning;

Within the warning handler, the first argument is the wag'smessage. Admittedly, this technique is less useful thsabling
warnings lexically—but it can come to good use in test modsiesh as from the CPAN, where the actual
text of the warning is important.

Registering Your Own Warnings

With the use of the pragmayou can even create your own lexical warnings so feaswf your code can
enable and disable lexical warnings as appropriate. Tteiasy to accomplish; from a module, the
pragma:

package Scary::Monkey;
use warnings::register;

1;

34See

128

Managing Real Programs

This will create a new warnings category named after the ggek . Enable these warnings with
and disable them with
Use to test if the calling lexical scope has the given warningegaty enabled. Use
to produce a warning only if warnings are in effect. For exian produce a warning in the category:

package Scary::Monkey;
use warnings::register;

sub import

{
warnings::warnif(deprecated ,
empty imports from . _ PACKAGE__ . are now deprecated)
unless @_;

See for more details.

Files

Most programs deal with the outside world in some fashiod,ranch of that interaction takes place with files: readinenth
writing them, manipulating them in some other fashion. Bewrly history as a language for system administrationtaxtl
processing has produced a language very well suited fomidripulation.

Input and Output

The primary mechanism of interacting with the world outside program is through filehandle Filehandles represent the
state of some channel of input or output, such as the starlaut or output of a program, a file from or to which to read or
write, and the position in a given file. Every Perl 5 prograas lthree standard filehandles available, (the input to the
program), (the output from the program), and (the error output from the program).

By default, everything you or goes to , while errors and warnings and everything you goes to
. This separation of output allows you to redirect usefupotiand errors to two different places—an output file and
error logs, for example.

The special filehandle represents the current file. When Perl finistwapmiling the file, it leaves the package
global available and open at the end of the compilation unit. If ylmuesstring data after or
, you can read that from the filehandle. This is useful for short, self-contained pags.
describes this feature in more detail.

Besides the standard filehandles, you can open your owrefilgles with the builtin. To open a file for reading:

open my $fh, <, filename
or die "Cannot read $filename: $\n";

The first operand is a lexical which will hold the openedtidedle. The second operand is file mode which determines
the type of the filehandle operation. The final operand &riame of the file. If the fails, the clause will throw an
exception, with the contents of giving the reason why the open failed.

Besides files, you can open filehandles to scalars:

use autodie; # see The autodie Pragma, page 167

my $captured_output;
open my $fh, >, \$captured_output;

do_something_awesome($fh);

129

Modern Perl

Table 1: File Modes

Symbols Explanation
Open for reading
Open for writing, clobbering existing contents |i
the file exists and creating a new file otherwise.
Open for writing, appending to any existing cop-
tents and creating a new file otherwise.
Open for readin@nd writing.

=

Such filehandles support all of the existing file modes.

You may encounter older code which uses the two-argumemt édr

open my $fh, "> $some_file"
or die "Cannot write to $some_file: $\n";

The lack of clean separation between the intended file modettze name of the file allows the possibility of unintenabn
behaviord® when interpolating untrusted input into the second oper¥ad can safely replace the two-argument form of open
with the three-argument form in every case without any Id$eature.

offers far more details about more exotic uses of , including its ability to launch and control other
processes, as well as the use of for finer-grained control over input and output. includes working
code for many common IO tasks.

Reading from Files

Given a filehandle opened for input, read from it with the operator, also written as . The most common idiom is
toread aline atatime in a loop:
use autodie;

open my $fh, <, some_file;
while (<$fh>)
{

chomp;
say "Read a line $_";

In scalar context, iterates through the lines of the file until it reaches thd efthe file (). Each iteration
returns the next line. After reaching the end of the file,hesieration returns . This idiom explicitly checks the
definedness of the variable used for iteration, such thigttbee end of file condition ends the loop.

Every line read from includes the character or characters which mark the end iofealh most cases, this is a
platform-specific sequence consisting of a newline)(a carriage returm(), or a combination of the twa(n). Use
to remove your platform's specific newline sequence.

With everything all together, the cleanest way to read frdesfin Perl 5 is:

use autodie;
open my $fh, <, $filename;

while (my $line = <$fh>)

35When you read that phrase, train yourself to think “I wondéhét might produce security problems?”

130

Managing Real Programs

chomp $line;
-
If you're not readingextualdata—instead readirfginary data—use on the filehandle before reading from or writing
to it. This builtin tells Perl to treat all of the filehandéedata as pure data. Perl will not modify it in any fashiontasight for
platform portability. Although Unix-like platforms may hto need in this case, portable programs use it anyway (see

Unicode and Strings, page 17).

Writing to Files
Given a filehandle open for output, you may or toit:

use autodie;
open my S$out_fh, >, output_file.txt;

print $out_fh "Heres a line of text\n";
say $out_fh "... and heres another";

Note the lack of comma between the filehandle and the sules¢@perand.

Damian Conway'sPerl Best Practicesecommends enclosing the filehandle in curly braces as &. Tdbs is

necessary to disambiguate parsing of a filehandle cordainan aggregate variable, and it won't hurt anything in

the simpler cases.
You may write an entire list of values to or , iIn which case Perl 5 uses the magic globaks the separator between
list values. Perl also uses any value aofas the final argument to or
Closing Files
When you've finished working with a file, you may it explicitly or allow its filehandle to go out of scope, in vah case
Perl will close it for you. The benefit of calling explicitly is that you can check for—and recover from—speadirors,
such as running out of space on a storage device or a brokennketonnection.
As usual, handles these checks for you:
use autodie;

open my $fth, >, $file;

close $fh;

Special File Handling Variables
For every line read, Perl 5 increments the value of the viiah which serves as a line counter.

uses the current contents of as the line-ending sequence. The value of this variableittef® the most appropriate
line-ending character sequence for text files on your cuipéatform. In truth, the wordine is a misnomer. You can set to
contain any sequence of charactérghis is useful for highly-structured data in which you wemtead aecordat a time.

By default, Perl usebuffered outputwhere it performs IO only when it has enough data to excedulestold. This allows
Perl to batch up expensive 10 operations instead of alwaifgwgyrery small amounts of data. Yet sometimes you want talse

36, .. but never a regular expression, because Perl 5 doesparsthat.

131

Modern Perl

data as soon as you have it without waiting for that bufferggpecially if you're writing a command-line filter connedtto
other programs or a line-oriented network service.

The variable controls buffering on the currently active outfilghandle. When set to a non-zero value, Perl will flush the
output after each write to the filehandle. When set to a zeley#erl will use its default buffering strategy.

In lieu of the global variable, use the method on a lexical filehandle. Be sure to load first, as you
cannot call methods on lexical filehandles otherwise:

use autodie;
use FileHandle;

open my $fh, >, pecan.log;
$fh->autoflush(1);

Once you have loaded , You may also use its and meth-
ods instead of and respectively. See and for more information.
has superseded in Perl 5.12.

Directories and Paths

You may also manipulate directories and file paths with BeWorking with directories is similar to working with fileexcept
that you cannotvrite to directoried’. Open a directory handle with

use autodie;

opendir my $dirh, /home/monkeytamer/tasks/ ;

The builtin reads from a directory. As with , Yyou may iterate over the contents of directories one ata tim
or you may assign them to a list in one swoop:

iteration
while (my $file = readdir $dirh)
{

}

flattening into a list
my @files = readdir $otherdirh;

As a new feature available in 5.12, ina will set , just as does in

use 5.012;
use autodie;

opendir my $dirh, tasks/circus/ ;

while (readdir $dirh)
{

next if /M,
say "Found a task $_!";

37Instead, you save and move and rename and remove files.

132

Managing Real Programs

The curious regular expression in this example skips sedaidden fileson Unix and Unix-like systems, where a leading
dot prevents them from appearing in directory listings bfadk. It also skips two special files returned from every
invocation, specifically and , which represent the current directory and the parent @irgcrespectively.

The names returned from arerelative to the directory itself. In other words, if thiasks/directory contains three
files namedeat drink, andbe_monkey will return , , and andnot tasks/eattasks/drink and
task/be_monkeyn contrast, arabsolutepath is a path fully qualified to its filesystem.

Close a directory handle by letting it go out of scope or wiith t builtin.

Manipulating Paths

Perl 5 offers a Unixy view of the world, or at least your filssggm. Even if you aren't using a Unix-like platform, Perl
will interpret Unix-style paths appropriately for your apéng system and filesystem. In other words, if you're gsMi-
crosoft Windows, you can use the path/My Documents/Robots/Bendgtst as easily as you can use the p&imMy
DocumentsRobotsiCaprica Six.

Even so, manipulating file paths in a safe and cross-platimanner suggests that you avoid string interpolation andate-
nation. The core module family provides abstractions to allow you to margpellfile paths in safe and portable
fashions. Even so, it's not always easy to understand ord@asgectly.

The distribution on the CPAN provides a nicer interface around . Use the function to create
an object representing a directory and the function to create an object representing a file:

use Path::Class;

my $meals = dir(tasks, cooking);
my $file = file(tasks, health, exoskeleton_research Axt),

...and you can get file objects from directories:
my $lunch = $meals->file(veggie_calzone.txt);
...and vice versa:

my $robots_dir = $robot_list->dir();

You can even open filehandles to directories and files:

my $dir_fh = $dir->open();
my $robots_fh = $robot_list->open(r) or die "Open failed B A
Both and offer further useful behaviors.

File Manipulation

Besides reading and writing files, you can also manipulaetas you would directly from a command line or a file manager
The file test operators can give you information about the laites of files and directories on your system. For example, t
test that a file exists:

say Present! if -e $filename;

The operator has a single operand, the name of a file or a file recttiry handle. If the file exists, the expression will
evaluate to a true value. lists all other file tests; the most popular are:

, Which returns a true value if its operand is a plain file
, Which returns a true value if its operand is a directory

133

Modern Perl

, Which returns a true value if the file permissions of its igmel permit reading by the current user

, which returns a true value if its operand is a non-empty file

As of Perl 5.10.1, you may look up the documentation for anthe§e operators with , for example.

The builtin can rename a file or move it between directoriesakess two operands, the old name of the file and the new
name:

use autodie;

rename death_star.txt, carbon_sink.txt ;

or if youre stylish:
rename death_star.txt => carbon_sink.txt;

There's no core builtin to copy a file, but the core module provides both and functions. Use
to remove one or more files. These functions and builtinsedllrn true values on success and sebn error.

provides convenience methods to check certain file atetbas well as to remove files completely,
in a cross-platform fashion.

Finally, Perl allows you to change its notion of the curreméectory. By default, this is the active directory from wherou
launched the program. The core module allows you to determine this. The builtin attempts to change the current
working directory. This can be useful for manipulating ilwith relative—not absolute—paths.

Modules

A moduleis a package contained in its own file and loadable with or . A module must be valid Perl 5 code. It must
end with an expression which evaluates to a true value sdttba®erl 5 parser knows it has loaded and compiled the module
successfully.

There are no other requirements, only strong conventions.

Packages correspond to files on disk in that when you load dutaowith or 's bareword form, Perl splits the
package name on double-colons) and turns the components of the package name into a file patts:

use StrangeMonkey;

...causes Perl to search for a file nang&tcangeMonkey.ptim every directory in , in order, until it finds one or exhausts
the list. As well:

use StrangeMonkey::Persistence;

...causes Perl to search for a file named in every directory name8trangeMonkeypresent in every directory
in , and so on. Finally:

use StrangeMonkey::Ul::Mobile;

...causes Perl to search for a relative file pathStfangeMonkey/Ul/Mobile.prm every directory in . There is no
technicalrequirement that the file at that location contain any declaration, let alone a declaration of
. Maintenance concerns highly recommend that conventioneher.

134

Managing Real Programs

will print the full path to the relevanpmfile, provided that thelocumentatiorior
that module exists in thgmfile.

Using and Importing

When you load a module with the builtin, Perl loads it from disk, then calls its method, passing any arguments
you provided. This occurs at compilation time:

use strict; # calls strict->import()

use CGI :standard; # calls CGIl->import(:standard)

use feature qw(say switch) # calls feature->import(qw(say switch))

You do not have to provide an method, and you may use it to do anything you wish, but thedstahAPI expectation

is that it takes a list of arguments of symbols (usually fiore) to make available in the calling namespace. This igrsttong
requirement; pragmas (see Pragmas, page 121) such as use arguments to change their behavior instead of exporting
symbols.

The builtin calls a module's method, if it exists, passing any arguments. While it's palsgio remove exported
symbols, it's more common to disable specific features afypras and other modules which introduce new behaviorsdhrou

use strict;

no symbolic references, variable declaration required, n o barewords

no strict refs;

symbolic references allowed
variable declaration still required; barewords prohibit ed

Like and , calls during compilation time. Effectively:

use Module::Name qw(list of arguments);

...is the same as:

BEGIN
{

require Module/Name.pm ;
Module::Name->import(qw(list of arguments));

Similarly:
no Module::Name qw(list of arguments);

...is the same as:

BEGIN
{

require Module/Name.pm ;
Module::Name->unimport(qw(list of arguments));

135

Modern Perl

If or does not exist in the module, Perl will not give an error mgesahey are truly|
optional.
...including the of the module.
You may call and directly, though it makes little sense to unimport a pragmuiaide of a block,
as they often have compilation-time effects.
Perl 5's and are case-sensitive, even if the underlying filesystem is\Wiile Perl knows the difference between
and , your combination of operating system and file system maylfhgou were to write , Perl
would not findstrict.pmon a case-sensitive filesystem. With a case-insensitiesyfstem, Perl will happily loa8trict.pm but
will try to call . Nothing will happen, becausgrict.pmdeclares a package named

Portable programs are strict about case even if they don twmbe.

Exporting

A module can make certain global symbols available to otlaekages through a process knowreaporting This is the flip
side of passing arguments to througha statement.

The standard way of exporting functions or variables to othedules is through the core module . relies
on the presence of package global variables— and in particula—which contain a list of symbols to
export when requested.

Consider a module which provides several standalone functions ughbdeighout the system:

package StrangeMonkey::Utilities;
use Exporter import;

our @EXPORT_OK = qw(round_number translate screech);

Any other code now can use this module and, optionally, impoy or all of the three exported functidfisYou may also
export variables:

push @EXPORT_OK, qw($spider $saki $squirrel);

The CPAN module provides a nicer interface to export functions without ggiackage globals. It
also offers more powerful options. However, can export variables, while only exports
functions.

You canexport symbols by default by listing them in instead of

our @EXPORT = gw(monkey_dance monkey_sleep);

...Sso that any will import both functions. Be aware that specifying synmstd import
will notimport default symbols. You can also load a module withoytaniing any symbols by providing an explicit empty
list:

38, .. thoughusingthe module in any code is suf cient to allow any other code t@ke its functions by their fully-qualified names.

136

Managing Real Programs

make the module available, but import() nothing
use StrangeMonkey::Utilities ();

Regardless of any import lists, you can always call funcimnanother package with their fully-qualified names:

StrangeMonkey::Utilities::screech();

Organizing Code with Modules

Perl 5 does not require you to use modules, nor packagesaneespaces. You may put all of your code in a singldile,
or in multiple .pl files you as necessary. You have the flexibility to manage your codbérmost appropriate way,
given your development style, the formality and risk andamhof the project, your experience, and your comfort with Be
deployment.

Even so, a project with more than a couple of hundred line®déceceives multiple benefits from module organization:

« Modules help to enforce a logical separation betweenndiséntities in the system.
« Modules provide an API boundary, whether procedural or OO.
¢ Modules suggest a natural organization of source code.

The Perl 5 ecosystem has many tools devoted to creatingtanaing, organizing, and deploying modules and distribu-
tions.

¢ Modules provide a mechanism of code reuse.

Even if you do not use an object-oriented approach, modelmegy distinct entity or responsibility in your system wit own
module keeps related code together and separate codetsepara

Distributions

A distributionis a collection of one or more modules (see Modules, page WBih forms a single redistributable, testable,
and installable unit. Effectively it's a collection of moléuand metadata.

The easiest way to manage software configuration, buildiiggribution, testing, and installation even within yauiganization

is to create distributions compatible with the CPAN. Thewamtions of the CPAN—how to package a distribution, how to
resolve its dependencies, where to install software, hovetiy that it works, how to display documentation, how torrage

a repository—have all arisen from the rough consensus oftmls of contributors working on tens of thousands of ptgjec

In particular, the copious amount of testing and reporting @ependency checking achieved by CPAN developers extieeds
available information and quality of work in any other laage community. A distribution built to CPAN standards can be
tested on several versions of Perl 5 on several differertviee platforms within a few hours of its uploading—all witio
human intervention.

You may choose never to release any of your code as public GRgthbutions, but you can reuse existing CPAN tools and
designs as possible. The combination of intelligent dédaarid customizability are likely to meet your specific need

Attributes of a Distribution
A distribution obviously includes one or more modules. #faaincludes several other files and directories:

 Build.PL or Makefile.PL, the program used to configure, build, test, bundle, an@ilrthie distribution.

MANIFEST a list of all files contained in the distribution. This helpackaging tools produce an entire tarball and helps
to verify that recipients of the tarball have all of the neszey files.

META.ymland/orMETA .json a file containing metadata about the distribution andégethdencies.
README a description of the distribution, its intent, and its cogit and licensing information.

lib/, the directory containing Perl modules.

137

Modern Perl

« t/, a directory containing test files.
e Changesa log of every change to the distribution.

Additionally, a well-formed distribution must contain aigne name and single version number (often taken from itagny
module). Any well-formed distribution you download frometipublic CPAN should conform to these standards—and the
CPANTS service evaluates the kwalitgef all CPAN distributions and recommends packaging impnosets.

CPAN Tools for Managing Distributions

The Perl 5 core includes several tools to manage distribstienot just installing them from the CPAN, but developing and
managing your own:

. is the of cial CPAN client. While by default it installs disbutions from the public CPAN, you can point it to
your own repository instead of or in addition to the publipasitory.

. is an alternate CPAN client with a different design approdictoes some things better than , but
they are largely equivalent at this point. Use whichever grafer.

. is a pure-Perl tool suite for configuring, building, inditad), and testing distributions. It works with the
Build.PLfile mentioned earlier.

. is an older, legacy tool which intends to replace. It is still in wide use, though
it is in maintenance mode and receives only the most cribogl fixes. It works with theMakefile.PLfile mentioned
earlier.

. (see Testing, page 123) is the basic and most widely usedgesbdule used to write automated tests for
Perl software.

. and (see Running Tests, page 124) are the tools used to run hebts anterpret and report their
results.

In addition, several non-core CPAN modules make your lifdexeas a developer:

. is a new utility which provides almost configuration-fregeuof the public CPAN. It fulfills 90% of
your needs to find and install modules.

. helps you to manage multiple installations of Perl 5. Thigdsy useful to use a newer version than
the system version or to isolate distributions you've itisthfor one application from distributions you've insedl for
another.

. and the command allow you to create your own (private) mirror of thiblc CPAN. You can
inject your own distributions into this repository and mgeavhich versions of the public modules are available in your
organization.

. is a toolkit for managing distributions by automating awaynetnon tasks. While it can use either
or , it can replaceyour use of them directly.
. allows you to report the results of running the automatetstgises of distributions you install, giving

their authors more data on any failures.

Designing Distributions

The process of designing a distribution could fill a booke(Sam Tregar'$Vriting Perl Modules for CPAIN but a few design
principles will help you. Start with a utility such as or from the CPAN. The initial cost of
learning the configuration and rules may seem like a steggstment, but the benefit of having everything set up thiet ricay
(and in the case of , hevergoing out of date) relieves you of much tedious bookkeeping.

Then consider several rules.

39Quality is dif cult to measure with heuristics. Kwalitee is¢ machine measurable relative of quality.

138

Managing Real Programs

e Each distribution should have a single, well-defined pwgdhat purpose may be to process a particular type of data
file or to gather together several related distributiorts i single installable bundle. Decomposing your softwate i
individual bundles allows you to manage their dependerag@sopriately and to respect their encapsulation.

« Each distribution needs a single version numb&rsion numbers must always increase. The semantic vepsilicy
() is sane and compatible with the Perl 5 approach.

e Each distribution should have a well-defined ARIcomprehensive automated test suite can verify that yountaiai
this API across versions. If you use a local CPAN mirror taalsyour own distributions, you can re-use the CPAN
infrastructure for testing distributions and their depamzles. You get easy access to integration testing acrosabke
components.

« Automate your distribution tests and make them repeatafdevaluable Managing software effectively requires you to
know when it works and how it fails if it fails.

¢ Present an effective and simple interfadgoid the use of global symbols and default exports; allowgle to use only
what they need and do not pollute their namespaces.

The UNIVERSAL Package

Perl 5 provides a special package which is the ancestor otladlr packages in a very object-oriented way. The
package provides a few methods available for all other ekaaad objects.

The isa() Method

The method takes a string containing the name of a class or the p&mbuilt-in type. You can call it as a class method
or an instance method on an object. It returns true if thesaa®bject is or derives from the named class, or if the olifeelf
is a blessed reference to the given type.

Given an object , @ hash reference blessed into the class (which inherits from the class):
say $pepper->isa(Monkey); # prints 1
say $pepper->isa(Mammal); # prints 1
say $pepper->isa(HASH); # prints 1

say Monkey->isa(Mammal); # prints 1

say $pepper->isa(Dolphin); # prints 0
say $pepper->isa(ARRAY); # prints O
say Monkey->isa(HASH); # prints O

Perl 5's core types are , , , , ,and
You can override in your own classes. This can be useful when working with malgjects (see
and on the CPAN, for example) or with code that does not use rales Roles, page 105).

The can() Method

The method takes a string containing the name of a method. ltmemreference to the function which implements that
method, if it exists. Otherwise, it returns false. You maljl ttas on a class, an object, or the name of a package. In thex la
case, it returns a reference to a function, not a method.

Given a class named with a method named , you can get a reference to the method with:

if (my $meth = SpiderMonkey->can(screech)) { ... }
if (my $meth = $sm->can(screech)

$sm->$meth();
}

Given a plugin-style architecture, you can test to see if ekpge implements a specific function in a similar way. The
module adds a method to the namespace to invert the sense of the
builtin:

139

Modern Perl

a useful CPAN module
use UNIVERSAL::require;

die $@ unless $module->require();

if (my $register = $module->can(register)

$register->();

...though in larger programs, use to handle this busy work for you.

You can (and should) override in your own code if you use (see Drawbacks of AUTOLOAD, page 87).
There isoneknown case where calling as a function and not a method is not incorrect] to
determine whether a class exists in Perl 5. If returns true, someonge
somewhere has defined a class of the name —though consider using instead Moose's introspectign.

The VERSION() Method

The method is available to all packages, classes, and objéc&tuins the value of the variable for the

appropriate package or class. It takes a version number@stiamal parameter. If you provide this version number tethod

will throw an exception if the queried is not equal to or greater than the parameter.

Given a module of version

say HowlerMonkey->VERSION(); # prints 1.23

say $hm->VERSION(); # prints 1.23

say $hm->VERSION(0.0); # prints 1.23

say $hm->VERSION(1.23); # prints 1.23

say $hm->VERSION(2.0); # throws exception

You can override in your own code, but there's little reason to do so.

The DOES() Method

The method is new in Perl 5.10.0. It exists to support the use lekr(see Roles, page 105) in programs. Pass it an
invocant and the name of a role, and the method will retura ifthe appropriate class somehow does that role—whether
through inheritance, delegation, composition, role ayapion, or any other mechanism.

The default implementation of falls back to , because inheritance is one mechanism by which a class may do
role. Given a :

say Cappuchin->DOES(Monkey); # prints 1

say $cappy->DOES(Monkey); # prints 1

say Cappuchin->DOES(Invertebrate); # prints 0

You can (and should) override in your own code if you manually provide a role or other alloptuc behavior.

Extending UNIVERSAL

It's tempting to store other methods in to make it available to all other classes and objects in PeAvbid this
temptation; this global behavior can have subtle side tffleecause it is unconstrained.

With that said, occasional abuse of for debuggingpurposes and to fix improper default behavior may be excus-
able. For example, Joshua ben Jore's distribution makes the nearly-useless operator usable. The

140

Managing Real Programs

and distributions can help you debug anti-polymorphism bugs (Method-Function
Equivalence, page 162), while can detect tho$e problems.

Outside of very carefully controlled code and very specifery pragmatic situations, there's no reason to put code in
directly. There are almost always much better design altemes.

Code Generation

Improving as a programmer requires you to search for bebigractions. The less code you have to write, the betternidre
general your solutions, the better. When you can delete cudladd features, you've achieved something great.

Novice programmers write more code than they need to wréag)ypfrom unfamiliarity with their languages, librarieand
idioms, but also due to inexperience creating and maimtgigbod abstractions. They start by writing long lists ofqaaural
code, then discover functions, then parameters, thentshpged—perhaps—higher-order functions and closures.

Writing programs to write programs for youmetaprogrammingr code generatiop—offers greater possibilities for abstrac-
tion. This can be as clear as exploiting higher-order prnognang capabilities or a rat hole down which you find yourself
confused and frightened. The techniques are powerful agfiilug-or example, they form the basis of Moose (see Mooge pa
100).

The technique (see AUTOLOAD, page 85) for missing functions arethods demonstrates this technique in a
constrained form; Perl 5's function and method dispatchesysallows you to customize what happens when normal lookup
fails.

eval

The simplest code generation technique is to build a stmgeining a snippet of valid Perl and compile it with thersgri
operator. Unlike the exception-catching block operator, string compiles the contents of the string within the current
scope, including the current package and lexical bindings.

A common use for this technique is providing a fallback if yaan't (or don't want to) load an optional dependency:

eval { require Monkey::Tracer }
or eval sub Monkey:Tracer:log {};

If is not available, its function will exist, but will do nothing.

—

This isn't necessarily thbestway to handle this feature, as the Null Object pattern offieose encapsulation, by
it is away to do things.

This simple example is deceptive. You must handle quotieges to include variables within your d code. Add more
complexity to interpolate some but not others:

sub generate_accessors

{

my ($methname, $attrname) = @_;

eval <<"END_ACCESSOR";
sub get_$methname

my \$self = shift;

return \$self->{$attrname};

}

sub set_$methname

40, .and many, many other.

141

Modern Perl

my (\$self, \$value) = \@_;
\$self->{$attrname} = \$value;

}
END_ACCESSOR
}

Woe to those who forget a backslash! Good luck convincing gyuatax highlighter what's happening! Worse yet, each invo
cation of string builds a new data structure representing the entire codaplliog code isn't free, either—cheaper than
performing 10, perhaps, but not free.

Even so, this technique is simple and reasonably easy tastade.

Parametric Closures

While building accessors and mutators with s straightforward, closures (see Closures, page 79) altawto add param-
eters to generated code at compilation time without reqgiaidditional evaluation:

sub generate_accessors
my $attrname = shift;
my $getter = sub

my $self = shift;
return $self->{$attrname};

h
my $setter = sub
my ($self, $value) = @_;

$self->{$attrname} = $value;

return $getter, $setter;

This code avoids unpleasant quoting issues and runs macklyjlas there's only one compilation stage, no matter howyna
accessors you create. It even uses less memory by sharingrigled code between all instances of the closure. All that
differs is the binding to the lexical. In a long-running process, or with a lot of accesstiris technique can be very
useful.

Installing into symbol tables is reasonably easy, if ugly:

{

my ($getter, $setter) = generate_accessors(homecourt)

no strict refs;
+*{ get_homecourt } = $getter;
+{ set_homecourt } = $setter;

}

The odd syntax of an asterfS8kdeferencing a hash refers to a symbol in the cursynibol tablewhich is the place in the
current namespace which contains globally-accessibldsigsuch as package globals, functions, and methods. Asgig
reference to a symbol table entry installs or replaces tipeogpiate entry. To promote an anonymous function to a ntgtho
assign that function reference to the appropriate entrigérsyymbol table.

This operation refers to a symbol with a string, not a litea@liable name, so it's a symbolic reference and it's necgssa
disable reference checking for the operation. Many programs hawgh#esbug in similar code, as they assign and
generate in a single line:

4IThink of it as atypeglob sigil where aypeglobis Perl jargon for “symbol table”.

142

Managing Real Programs

no strict refs;

*{ $methname } = sub {
subtle bug: strict refs
are disabled in here too

This example disables strictures for the outer block as agethe inner block, the body of the function itself. Only tissign-
ment violates strict reference checking, so disable stéstfor that operation alone.

If the name of the method is a string literal in your sourcee;adther than the contents of a variable, you can assigreto th
relevant symbol directly rather than through a symbolierefce:

no warnings once ;
(*get_homecourt, *set_homecourt) = generate_accessors(homecourt);

Assigning directly to the glob does not violate strictutas, mentioning each glob only ondeesproduce a “used only once”
warning unless you explicitly suppress it within the scope.

Compile-time Manipulation

Unlike code written explicitly as code, code generateduglostring gets compiled at runtime. Where you might expect
a normal function to be available throughout the lifetimeyoéir program, a generated function might not be availablerwh
you expect it.

Force Perl to run code—to generate other code—during the ¢atiopi stage by wrapping it in a block. When the Perl
5 parser encounters a block labeled |, it parses the entire block. Provided it contains no syntexrs, the block will run
immediately. When it finishes, parsing will continue as été were no interruption.

In practical terms, the difference between writing:
sub get_age { ..}
sub set_age { ..}

sub get name { .. }
sub set_name { ...}

sub get_weight { ... }
sub set_weight { ... }

..and:

sub make_accessors { ... }

BEGIN
{

for my $accessor (qw(age name weight))

{
my ($get, $set) = make_accessors($accessor);
no strict refs;

*{ get_ . $accessor } = $get;
*{ set_ . $accessor } = $set;

...is primarily one of maintainability.

Within a module, any code outside of functions executes wloen it, because of the implicit Perl adds around the
and (see Importing, page 67). Any code outside of a function hsidie the module will executeeforethe

143

Modern Perl

call occurs. If you the module, there is no implicit block. The execution of code outside of functions
will happen at theendof parsing.

Also beware of the interaction between lexidatlaration(the association of a name with a scope) and lexdsalgnmentThe
former happens during compilation, while the latter ocairthe point of execution. This code has a subtle bug:

use UNIVERSAL::require;

buggy; do not use
my $wanted_package = Monkey::Jetpack ;

BEGIN
{

$wanted_package->require();
$wanted_package->import();

}

...because the block will executebeforethe assignment of the string value to occurs. The result will
be an exception from attempting to invoke the method on the undefined value.

Class::MOP

Unlike installing function references to populate namesgaand to create methods, there's no simple default wayetter
classes in Perl 5. Fortunately, a mature and powerful Higion is available from the CPAN to do just this. is the
library which makes Moose (see Moose, page 100) possilpeoVides aneta object protocel-a mechanism for creating and
manipulating an object system in terms of itself.

Rather than writing your own fragile string code or trying to poke into symbol tables manually, you camimaate the
entities and abstractions of your program with objects aathods.

To create a class:

use Class::MOP;

my $class = Class::MOP::Class->create(Monkey::Wrench);

You can add attributes and methods to this class when yotedtea

use Class::MOP;

my $class = Class::MOP::Class->create(
Monkey::Wrench =>

attributes =>

[
Class::MOP::Attribute->new($material),
Class::MOP::Attribute->new($color),

]

methods =>

{
tighten => sub { ... },
loosen => sub { ... },

)
...or add them to thmetaclasgthe object which represents that class) after you've eckt

$class->add_attribute(experience => Class::MOP::Attri bute->new($xp));
$class->add_method(bash_zombie => sub { ... });

...and you can inspect the metaclass:

my @attrs = $class->get_all_attributes();
my @meths = $class->get_all_methods();

You can similarly create and manipulate and introspeabatis and methods with and

144

Managing Real Programs

Overloading

Perl 5 is not a pervasively object oriented language. It data types (scalars, arrays, and hashes) are not obj#ttaethods
you can overload. Even so, yeancontrol the behavior of your own classes and objects, ealigwihen they undergo coercion
or evaluation in various contexts. Thisagerloading

Overloading can be subtle but powerful. An interesting eplenis overloading how an object behaves in boolean context,
especially if you use something like the Null Object pattérn). In boolean
context, an object will be true. . . but not if you overload hifd@ation.

You can overload what the object does for almost every ojerastringification, numification, boolification, itetion, in-
vocation, array access, hash access, arithmetic opesatiomparison operations, smart match, bitwise operatams even
assignment.

Overloading Common Operations

The most useful are often the most common: stringificatmmification, and boolification. The pragma allows you
to associate a function with an operation you can overloatesl a class which overloads boolean evaluation:

package Null;

use overload bool => sub { 0 };

In all boolean contexts, every instance of this class willeate to false.

The arguments to the pragma are pairs where the key describes the type of ovedonddhe value is a function
reference to call in place of Perl's default behavior fort thiaject.

It's easy to add a stringification:

package Null;

use overload
bool => sub { 0 },
=> sub { (null) }

Overriding numification is more complex, because arithmeperators tend to be binary ops (see Arity, page 59). Giwen
operands both with overloaded methods for addition, whidte$ precedence? The answer needs to be consistent, easy to
explain, and understandable by people who haven't readdiines code of the implementation.

attempts to explain this in the sections labe&alling Conventions for Binary Operatiorsnd MAGIC
AUTOGENERATIONbut the easiest solution is to overload numification arid te to use the provided overloads as
fallbacks where possible:

package Null;

use overload
bool =>sub { 0},
=> sub { (null) },

0+ => sub { 0 },
fallback => 1;
Setting to a true value lets Perl use any other defined overloadsrgpose the requested operation, if possible. If

that's not possible, Perl will act as if there were no ovedla effect. This is often what you want.

Without , Perl will only use the specific overloadings you have pded. If someone tries to perform an operation
you have not overloaded, Perl will throw an exception.

145

Modern Perl

Overload and Inheritance

Subclasses inherit overloadings from their ancestorsy Tieey override this behavior in one of two ways. If the pardass
uses overloading as shown, with function references pealvidirectly, a child classnustoverride the parent's overloaded
behavior by using directly.

Parent classes can allow their descendants more fleyibyitspecifying thenameof a method to call to implement the over-
loading, rather than hard-coding a function reference:

package Null;

use overload
bool => get_bool,
=> get_string,
0+ => get_num,
fallback => 1;

Child classes do not have to use themselves; they can merely override the appropriate methods. This is often
more flexible.

Uses of Overloading

Overloading may seem like a tempting tool to use to producebsyic shortcuts for new operations. The CPAN
distribution pushes this idea to its limit to produce cleigeras for concise and composable code. Yet for every hilkeP|
refined through the appropriate use of overloading, a dozere messes congeal. Sometimes the best code eschewsetsver
in favor of simple and straightforward design.

Overriding addition, multiplication, and even concatémabn a class makes sense, only because the existing notation
for those operations is pervasive. A new problem domainawuithhat established notation is a poor candidate for oadiiw,
as is a problem domain where you have to squint to make Pgi$irgg operators match a different notation.

Damian Conway'sPerl Best Practicesuggests that the other useful use of overloading is to ptdfie accidental abuse of
objects. For example, overloading numification to for objects which have no reasonable single numeric reptaten
can help you find real bugs in real programs. Overloadingerl B is relatively rare, but this suggestion can improve the
reliability and safety of programs.

Taint

Perl gives you tools with which to write programs securelye3e tools are no substitute for careful thought and pla it
theyreward caution and understanding and can help you avoid subtlekeist

Using Taint Mode

A feature calledtaint modeor taint adds a small amount of metadata to all data which comes framrtes outside of your
program. Any data derived from tainted data is also tainted. may use tainted data within your program, but if you ude it
affect the outside world—if you use it insecurely—Perl wiltatv a fatal exception.

explains taint mode in copious detail among other secutitgigjines.

To enable taint mode, launch your program with theflag. You can use this flag on the line of a program only if you
make the program executable and do not launch it with ; if you run it as and neglect the
flag, Perl will exit with an exception. By the time Perl enooers the flag on the line, it's missed its opportunity to taint the
environment data which makes up , for example.

Sources of Taint

Taint can come from two places: file input and the programpsrating environment. The former is anything you read from a
file or collect from users in the case of web or network prograng. The latter is more subtle. This includes any comniarel-
arguments, environment variables, and data from systde Ealen operations such as reading from a directory haogiened
with) produces tainted data.

146

Managing Real Programs

The function from the core module returns true if its argument is tainted:

die "Oh no!" if Scalar::Util::tainted($some_suspicious_ value);

Removing Taint from Data

To remove taint, you must extract known-good portions ofdata with a regular expression capture. The captured d#tbewi
untainted. If your user input consists of a US telephone rarmfmu can untaint it with:

die "Number still tainted!"
unless $tainted_number =~ /(\(/d{3}\) \d{3}-\d{4})/;

my $safe_number = $1;

The more specific your pattern is about what you allow, theensecure your program can be. The opposite approadérgfing
specific items or forms runs the risk of overlooking someghiharmful. In the case of security, Perl prefers that yoalttie/
something that's safe but unexpected than that you allowesimimg harmful which appears safe. Even so, nothing prewent
from writing a capture for the entire contents of a variablastih that case, why use taint?

Removing Taint from the Environment

One source of taint is the superglobal , which represents environment variables for the systens. ddta is tainted because

forces outside of the program's control can manipulate eslihere. Any environment variable which modifies how Perl o

the shell finds files and directories is an attack vectoraidttsensitive program should delete several keys from and set
to a specific and well-secured path:

delete @ENV{ qw(IFS CDPATH ENV BASH_ENV) };
$ENV{PATH} = /path/to/app/binaries/ ;

If you do not set appropriately, you will receive messages about its insgcur

If this environment variable contained the current workéigectory, or if it contained relative directories, or |if
the directories specified had world-writable permissjanslever attacker could hijack system calls to perpetrate
insecure operations.

For similar reasons, does not contain the current working directory under taiotie Perl will also ignore the
and environment variables. Use the pragma or the flag to if you need to add library directories to the
program.

Taint Gotchas

Taint mode is all or nothing. It's either on or off. This sonne¢s leads people to use permissive patterns to untaint atada
gives the illusion of security. Review untainting carefull

Unfortunately, not all modules handle tainted data appatgly. This is a bug which CPAN authors should take seripusl
you have to make legacy code taint-safe, consider the use of tflag, which enables taint mode but reduces taint violations
from exceptions to warnings. This is not a substitute forthiht mode, but it allows you to secure existing programshut

the all or nothing approach of .

147

Perl Beyond Syntax

Perl 5 is a large language, like any language intended t@ gobblems in the real world. Effective Perl programs regjuiore
than mere understanding of syntax; you must also begin terstehd how Perl's features interact and common ways ofreplv
well-understood problems in Perl.

Prepare for the second learning curve of Perl: Perlish thnkThe effective use of common patterns of behavior antitui
shortcuts allow you to write concise and powerful code.

Idioms

Any language—programming or natural—devel@iems or common patterns of expression. The earth revolves, bspwak
of the sun rising or setting. We talk of clever hacks and nhatks and slinging code.

As you learn Perl 5 more clearly, you will begin to see and usid@ed common idioms. They're not quite language features—
you don't haveto use them—and they're not quite large enough that you caapsotate them away behind functions and
methods. Instead, they're mannerisms. They're ways ofngiPerl with a Perlish accent.

The Object as

Perl 5's object system (see Moose, page 100) treats theantaf a method as a mundane parameter. The invocant of a class
method—a string containing the name of the class—is that rd&tliost parameter. The invocant of an object or instance
method—the object itself—is that method's first parameteu ¥re free to use or ignore it as you see fit.

Idiomatic Perl 5 uses as the name of the class method and for the name of the object invocant. This is a
convention not enforced by the language itself, but it isveation strong enough that useful extensions such as
assume you will use as the name of the invocant by default.

Named Parameters

Without a module such as or , Perl 5's argument passing mechanism is simple: all argu-
ments flatten into a single list accessible through(see Function Parameters, page 64). While this simpliciocéasionally
too simple—named parameters can be very useful at times—stramereclude the use of idioms to provide named parameters.

The list context evaluation and assignment ofallows you to unpack named parameters as pairs in a natudaPariish
fashion. Even though this function call is equivalent togiag a comma-separated or -created list, arranging the arguments
as if they were true pairs of keys and values makes the cgitlerof the function appear to support named parameters:

make_ice_cream_sundae(
whipped_cream => 1,

sprinkles = 1,
banana => 0,
ice_cream => mint chocolate chip,

)
The callee side can unpack these parameters into a hashleanth& hash as if it were the single argument:

sub make_ice_cream_sundae
{
my %args = @_;

my $ice_cream = get_ice_cream($args{ice_cream}));

148

Perl Beyond Syntax

Perl Best Practicesuggests passing a hash reference instead. This allowR&eck that you've constructed|a
valid hash on the caller side. It also uses slightly less nmgrii@n the other approach.

This technique works well with (see Importing, page 67); you can process as many paranastgu like before
slurping the remainder into a hash:

sub import

my ($class, %args) = @_;
my $calling_package = caller();

The Schwartzian Transform

People new to Perl sometimes overlook the importance afédist list processing as a fundamental component of expressi
evaluation. Put more simply, the ability for Perl programs® chain expressions which evaluate to variable-lenigts |
provides countless opportunities to manipulate data &ffely.

The Schwartzian transforrs an elegant demonstration of that principle as an idiondiyaborrowed from the Lisp family of
languages.

Suppose you have a Perl hash which associates the names abyaorkers with their phone extensions:

my %extensions =

(
4 => Jerryd,
5 => Rudy,
6 => Juwan,
7 => Brandon,
10 => Joel,
21 => Marcus,
24 => Andre,
23 => Martell,
52 => Greg,
88 => Nic,

Suppose you want to print a list of extensions and co-worgerted by their names, not their extensions. In other worois,
need to sort this hash by its values. Sorting the values dfdlsé in string order is easy:

my @sorted_names = sort values %extensions;

... but that loses the association of names with extensidresSchwartzian transform can perform the sorting whils@neng
the necessary information. First, convert the hash intstaofi data structures which contain the vital informatiorsartable
fashion. In this case, convert the hash pairs into two-etg¢@eonymous arrays:

my @pairs = map { [$_, $extensions{$_}] } keys %extensions;

Reversing the hasim placewould work if no one had the same name. This particular ddtaresents no such
problem, but code defensively.

takes the list of anonymous arrays and compares their sagennts (the names) as strings:

my @sorted_pairs = sort { $a->[1] cmp $b->[1] } @pairs;

149

Modern Perl

The block provided to takes its arguments in two package-scoped (see Scope, Ppgariables and #2. You do not
have to declare these variables; they are always availableur current package. The block takes its arguments two at
a time; the first becomes the contents ofand the second the contents of If ~ should come before in the results, the
block must return -1. If both values are suf ciently equaltive sorting terms, the block must return 0. Finally, if should
come after in the results, the block should return 1. Any other returues are errors.

The operator performs string comparisons and the performs numeric comparisons.

Given ,asecond operation converts the data structure to a more usable form:
my @formatted_exts = map { "$_->[1], ext. $_->[0]" } @sorted _pairs;
...and now you can print the whole thing:

say for @formatted_exts;

Of course, this uses several temporary variables (with @edhy bad names). It's a worthwhile technique and good teun
stand, but the real magic is in the combination:

say for
map { " $_->[1], ext. $_->[0]" }
sort { $a->[1] cmp $b->[1] }
map {[$_ => $extensions{$_}] }

keys %extensions;

Read the expression from right to left, in the order of evidua For each key in the extensions hash, make a two-itemyano
mous array containing the key and the value from the hash.t&atrlist of anonymous arrays by their second elements, the
values from the hash. Format a string of output from thostedarrays.

The Schwartzian transform is this pipeline of - - where you transform a data structure into another form eémie
sorting and then transform it back into your preferred foamrhodification.

This transformation is simple. Consider the case whereautatlog the right value to sort is expensive in time or memeugh

as calculating a cryptographic hash for a large file. In ttee, the Schwartzian transform is also useful because aou c
execute those expensive operations once (in the rightmo$t compare them repeatedly from a de facto cache in the,
and then remove them in the leftmost .

Easy File Slurping

Perl 5's magic global variables are truly global in many sass all too easy to clobber their values elsewhere, wyes! use
everywhere. Yet this requirement has allowed the creatieeweral interesting idioms. For example, you can slugsfil
into a scalar in a single expression:

my $file = do { local $/ = <$fh> };
or

my $file = do { local $/; <$fh> };

is the input record separator. izing it sets its value to , pending assignment. That ization takes placbefore
the assignment. As the value of the separator is undefirextihBppily reads the entire contents of the filehandle i@ ®woop
and assigns that value to. Because a block evaluates to the value of the last expression evaluaithin the block, this
evaluates to the value of the assignment, or the contentgedii¢. Even though immediately reverts to its previous state at
the end of the block, now contains the contents of the file.

42See for an extensive discussion of the implications of this sagpi

150

Perl Beyond Syntax

The second example contains no assignment and merely saharsingle line read from the filehandle. You may see either
example; they both work the same way in this case.

This can be useful (and, admittedly, maddening for peoplaraitiar with this particular combination of Perl 5 featg)ef you
don't have installed from the CPAN.

Controlled Execution

The effective difference between a program and a modulets intended use. Users invoke programs directly, whilgpxms
load modules after execution has already begun. The teahdifference between a program and a module is whether it's
meaningful to invoke the entity directly.

You may encounter this when you wish to use Perl's testingst(gee Testing, page 123) to test functions in a standalone
program or when you wish to make a module users can run dirédtlyou need to do is to discovérowPerl began to execute
a piece of code. For this, use

's single optional argument is the number of call frames Whareport. (Acall frameis the bookkeeping information
which represents a function call.) You can get informatibowt the current call frame with . To allow a module to
run correctly as a prograwr a module, write an appropriate function and add a single line to the start of the module:

main() unless caller(0);

If there'sno caller for the module, someone invoked it directly as a paog(with instead of
).
Checking the eighth element of the list returned from in list context may be more accurate in most cases,
but it's rare. This value is true if the call frame represents or and otherwise.
Handling Main

Perl requires no special syntax for creating closures ($esu€es, page 79); you can close over a lexical variablevieraently.
This israrely a problem in practice, apart from specific concerns in med gituations. ..and functions.

Many programs commonly set up several file-scoped lexiealbles before handing off processing to other functidt'ss.
tempting to use these variables directly, rather than pgssilues to and returning values from functions, espgcalbrograms
grow to provide more features. Worse yet, these programscarag to rely on subtleties of what happens when during Perl 5'
compilation process; a variable ythoughtwould be initialized to a specific value may not get inittgd until much later.

There is a simple solution. Wrap the main code of your prograesimple function, . Encapsulate all of the variables
you don't need as true globals. Then add a single line to tigenhang of your program, after you've used all of the modules
and pragmas you need:

#!/usr/bin/perl

use Modern::Perl;
use autodie;

main(@ARGS);

Calling beforeanything else in the program forces you to be explicit aboititalization and order of compilation. It
also helps to remind you to encapsulate the behavior of ymgram into functions and modules. (It works nicely witte§l
which can be programs and libraries—see Controlled Exetuypiage 151.)

151

Modern Perl

Postfix Parameter Validation

Even if you don't use a CPAN module such as or to verify that the param-
eters your functions receive are correct, you can still ieflem occasional checks for correctness. The control flow
modifier is an easy and readable way to assert your expeatasit the beginning of a function.

Suppose your function takes two arguments, no more and aoYesacould write:
use Carp;
sub groom_monkeys

it @_ =2

{ croak Monkey grooming requires two monkeys! ;

}

...but from a linguistic perspective, the consequencesname important than the check and deserve to be astdmeof the
expression:

croak Monkey grooming requires two monkeys! if @_ = 2;

...which, depending on your preference for reading postixditions, you can simplify to:

croak Monkey grooming requires two monkeys! unless @_ == 2

This is easier to read if you focus on the text of the messageu(heed to pass two parameters!”) and the testghould
contain two items). It's almost a single row in a truth table.

Regex En Passant
Many Perl 5 idioms rely on the language design where expres®valuate to values, as in:

say my $ext_num = my $extension = 42;

It's bad form to write code like that, but it demonstratesplo@t: you can use the value of one expression in anotheesgn.
This isn't a new idea; you've likely used the return value diiaction in a list or as an argument to another function kefor
You may not have realized its implications.

Suppose you have a whole name and you want to extract thedinse. This is easy to do with a regular expression:
my ($first_name) = $name =~ /($first_name_rx)/;

...where is a precompiled regular expression. In list context, a essftl regex match returns a list of all
captures, and Perl assigns the first one to

Now imagine if you want to modify the name, perhaps removithgq@n-word characters to create a useful user name for a
system account. You can write:

(my $normalized_name = $name) =~ tr/A-Za-z//dc;
Unlike the previous example, this one reads right to lefsti-assign the value of to . Then, translit-
erate 43, The assignment expression evaluates tovtiv@ble . This technique works

on all sorts of in-place modification operators:

my $age = 14;
(my $next_age = $age)++;

say "Next year | will be $next_age";

43The parentheses here affect the precedence so that therassighappens first.

152

Perl Beyond Syntax

Unary Coercions

Perl 5's type system often does the right thing, at leastuf glooose the correct operators. To concatenate stringtheisering
concatenation operator, and Perl will treat both scalastragys. To add two numbers, use the addition operator aridhvitie
treat both scalars as numeric.

Sometimes you have to give Perl a hint about what you mearer&8awnary coercionsexist, by which you can use Perl 5
operators to force the evaluation of a value a specific way.

To ensure that Perl treats a value as numeric, add zero:

my $numeric_value = 0 + $value;

To ensure that Perl treats a value as boolean, double négate i

my $hoolean_value = ! $value;

To ensure that Perl treats a value as a string, concatevaitd the empty string:

my $string_value = . $value;

Though the need for these coercions is vanishingly rareshould understand these idioms if you encounter them.

Global Variables

Perl 5 provides severalper global variableshat are truly global, not restricted to any specific pagkalhese super globals
have two drawbacks. First, they're global; any direct oiiriect modifications may have effects on other parts of thoegypmm.
Second, they're terse. Experienced Perl 5 programmers iaveorized some of them. Few people have memorized all of
them. Only a handful are ever useful. contains the exhaustive list of such variables.

Managing Super Globals

The best approach to managing the global behavior of thgser gjlobals is to avoid using them. When you must use them,
use in the smallest possible scope to constrain any modifinatiz¥ou are still susceptible to any changes codegaiu
makes to those globals, but you reduce the likelihood ofrising codeoutsideof your scope.

Workarounds exist for some of this global behavior, but mainghese variables have existed since Perl 1 and will coatasi
part of Perl 5 throughout its lifetime. As the easy file siagidiom (see Easy File Slurping, page 150) demonstratésjg
often possible:

my $file = do { local $/ = <$fh> };

The effect of izing lasts only through the end of the block. There is a low chanatany Perl code will run as a result
of reading lines from the filehand&and change the value of within the block.

Not all cases of using super globals are this easy to guatdhiswften works.

Other times you need teadthe value of a super global and hope that no other code hadietbiti Catching exceptions with
an block can be susceptible to race condititpén that methods invoked on lexicals that have gone out of
scope may reset :

44A tied filehandle is one of the few possibilities.

45Use instead!

153

Modern Perl

local $@;
eval { ... }

if (my $exception = $@) { ... }
Copy immediatelyto preserve its contents.

English Names
The core module provides verbose names for the punctuation-hegwgrsglobals. Import them into a namespace
with:

use English -no_match_vars ;

Subsequently you can use the verbose names documented in within the scope of this namespace.

Three regex-related super globals (, and) impose a global performance penalty &t regular expressions within a
program. If you neglect to provide that import flag, your gram will suffer the penalty even if you don't explicitly rédrom
those variables. This is not the default behavior for backecompatibility concerns.

Modern Perl programs should use thevariable as a replacement for the terrible three.

Useful Super Globals

Most modern Perl 5 programs can get by with using only a coopllbe super globals. Several exist for special circum&anc
you're unlikely to encounter. While is the canonical documentation for most of these varialdesje
deserve special mention.

. (or from the pragma) is a string of zero or more characters which denotes
the end of a record when reading input a line at a tfimBy default, this is your platform-specific newline chatec
sequence. If you undefine this value, Perl will attempt tadréhe entire file into memory. If you set this value to a
referenceto an integer, Perl will try to read that mabytesper record (so beware of Unicode concerns).

L) contains the number of current record read from the mositcaccessed filehandle. You
can read from this variable, but writing to it has no effeaichlizing this variable will localize the filehandle to vehiit
refers.

L) is the boolean value of this variable governs whether P#lrflush everything written to the

currently selected filehandle immediately or only whenl'Béuffer is full. Unbuffered output is useful when writirtg
a pipe or socket or terminal which should not block waitingifgout.

. contains the command-line arguments passed to the program.

. () is a dualvar (see Dualvars, page 48) which contains thdtrefsthe most recensystem call. In numeric
context, this corresponds to C's value, where anything other than zero indicates some kinerrafr. In string
context, returns the appropriate system error string. lizedhis variable before making a system call (implicitly o
explicitly) to avoid overwriting the appropriate value fother code elsewhere. Many places within Perl 5 itself make
system calls without your knowledge. The value of this \@ldacan change out from under you, so copyrnimediately
after making such a call yourself.

LI) is a string used to separate array and list elements idgtgubinto a string.

e contains named captures from successful regular expressitches (see Named Captures, page 94).

o) contains the value thrown from the most recent exceptiea (atching Exceptions, page 119).

. () contains the name of the program currently executing. Yay modify this value on some Unix-

like platforms to change the name of the program as it appgeather programs on the system, such asr

46yes, should more accurately be , but the name has stuck by now.

154

Perl Beyond Syntax

. () contains the process id of the currently running instaricke@program, as the operating system understands
it. This will vary between ed programs and may vary between threads in the same program.

. holds a list of filesystem paths in which Perl will look fotefs to load with or . See
for other items this array can contain.

. maps OS and low-level Perl signals to function referencesl tis handle those signals. Trap the standard Ctrl-

C interrupt by catching the signal, for example. See for more information about signals and
especially safe signals.

Alternatives to Super Globals

The worst culprits for action at a distance relate to 10 antepkional conditions. Using (see Exception Caveats,

page 120) will help insulate you from the tricky semanticpdper exception handling. izing and copying the value of
can help you avoid strange behaviors when Perl makes imhgjistem calls.

allows you to call methods on filehandles (see FilehandliziRaces, page 54) to replace the manipulation of
IO-related super globals. Call the method on a lexical filehandle instead of ing the filehandle, then

manipulating . Use the method to get the equivalent of for that specific filehandle. See the
documentation for other appropriate methods.

155

What to Avoid

Perl 5 isn't perfect. Some features seemed like good idetgedtme, but they're dif cult to use correctly. Others domork
as anyone might expect. A few more are simply bad ideas. Tleasares will likely persist—removing a feature from Perdis
serious process reserved for only the most egregious @$enbut you can and should avoid them in almost every case.

Barewords

Perl uses sigils and other punctuation pervasively to hetp the parser and the programmer identify the categoriesioied
entities. Even so, Perl is a malleable language. You carevpribgrams in the most creative, maintainable, obfuscated,
bizarre fashion as you prefer. Maintainability is a conagfrgood programmers, but the developers of Perl itself dor@sume
to dictate whayoufind most maintainable.

Perl's parser understands the builtin Perl builtins andraipes; it knows that means you're making objects (see
Blessed References, page 110). These are rarely ambigubuisPerl programmers can add complexity to parsing bygusin
barewords A bareword is an identifier without a sigil or other attadldisambiguation as to its intended syntactical function.

Because there's no Perl 5 builtin , the literal word appearing in source code is ambiguous. Did you intend to use
a variable or to call a function ? The pragma warns about use of such ambiguous barewords for good
reason.

Even so, barewords are permissible in several places irbRerlgood reason.

Good Uses of Barewords

Hash keys in Perl 5 are barewords. These are usually not amisgoecause their use as keys is suf cient for the parser to
identify them as the equivalent of single-quoted stringst e aware that attempting to evaluate a function call orilirbu
operator (such as) to producea hash key may not do what you expect, unless you disambigygieviding arguments,
using function argument parentheses, or prepending uhasy@force the evaluation of the builtin rather than itenpretation

as a string:

the literal shift is the key
my $value = $items{ shift }

the value produced by shift is the key
my $value = $items{ shift @_ }

unary plus uses the builtin shift
my $value = $items{ +shift};

Package names in Perl 5 are barewords in a sense. Good namirentions for packages (initial caps) help prevent unadnt
surprises, but the parser uses a complex heuristic basdaeorotle it's already compiled within the current namespace t
determine whether means to call a function named and then call the method on

its results or whether to treat as the name of a package. You can disambiguate this with gtéppackage separator
(), but that's rare and admittedly ugly:

probably a class method
Package->method();

definitely a class method
Package::->method();

156

What to Avoid

The special named code blocks provide their own types ofwmacs. , , and
declarefunctions, but they do not need the builtin to do so. You may be fam|I|ar with the |d|om of writing
without

package Monkey::Butler;

BEGIN { initialize_simians(_ PACKAGE__) }

You canleave off the on declarations, but that's uncommon.

Constants declared with the pragma are usable as barewords:

dont use this for real authentication
use constant NAME => Bucky;
use constant PASSWORD => |38fishlhead74];

return unless $name eq NAME && $pass eq PASSWORD;

Be aware that these constantsrdi interpolate in interpolation contexts such as double-gdistrings.

Constants are a special case of prototyped functions (stetfgves, page 159). If you've predeclared a prototype fanation,
you may use that function as a bareword; Perl 5 knows evenytihineeds to know to parse all occurrences of that function
appropriately. The other drawbacks of prototypes stillapp

IlI-Advised Uses of Barewords

Barewords should be rare in modern Perl code; their amlyiguitduces fragile code. You can avoid them in almost evesg ca
but you may encounter several poor uses of barewords inyegte.

Prior to lexical filehandles (see Filehandle Referencagefb4), all file and directory handles used barewords. épuadmost
always safely rewrite this code to use lexical filehandiks;exceptions are , , and

Code written without in effect may use bareword function names. You may safelgrghesize the argument
lists to these functions without changing the intent of theet’.

Along similar lines, old code may not take pains to quotevleesof hash pairs appropriately:

poor style; do not use
my %parents =

(

mother => Annette,
father => Floyd,

Because neither the nor functions exist, Perl parses these hash values as strihgs. T
pragma makes the parser give an error in this situation.

Finally, the builtin can take as its second argument tiaeneof a function to use for sorting. Instead providesgerence
to the function to use for sorting to avoid the use of bareword

poor style; do not use
my @sorted = sort compare_lengths @unsorted;

better style
my $comparison = \&compare_lengths;
my @sorted = sort $comparison @unsorted;
47Use to discover how Perl parses them, then parenthesize acgbydin

157

Modern Perl

The result is one line longer, but it avoids the use of a baréwdnlike other bareword examples, Perl's parser needs no
disambiguation for this syntax. There is only one way fooiirtterpret . However, the clarity of an explicit
reference can help human readers.

Perl 5's parsedoes nounderstand the single-line version:

does not work
my @sorted = sort \&compare_lengths @unsorted;

This is due to the special parsing of ; you cannot use an arbitrary expression (such as takingeserefe to a named
function) where a block or a scalar might otherwise go.

Indirect Objects

A constructor in Perl 5 is anything which returns an object; is not a builtin operator. By convention, constructors des<
methods named , but you have the flexibility to choose a different approszimeet your needs. Several old Perl 5 object
tutorials promote the use of C++ and Java-style construetits:

my $g = new CGIl; # DO NOT USE

...instead of the unambiguous:

my $gq = CGIl->new();

These syntaxes are equivalent in behavior, except wheietreyt.

The first form is the indirect object form (more preciselye tlativecase), where the verb (the method) precedes the noun to
which it refers (the object). This is fine in spoken langugadmit it introduces parsing ambiguities in Perl 5.

Bareword Indirect Invocations

One problem is that the name of the method is a bareword (sesvBals, page 156). The parser must apply several hesristic
to determine the proper interpretation. While these hecsisire well-tested analmostalways correct, their failure modes are
confusing. Worse, they're fragile in the face of thieler of compilation and module loading.

Parsing is more dif cult for humanandthe computer when the constructor takes arguments. Theeaidityle may resemble:

DO NOT USE
my $obj = new Class(arg => $value);

...thus making the class name look like a function call. Perl 8andisambiguate many of these cases, but its heuristics
depend on which package names the parser has seen at th@ poirg in the parse, which barewords it has already resolve
(and how it resolved them), and thamesof functions already declared in the current package.

Imagine running afoul of a prototyped function (see Prqgtes; page 159) with a name which just happens to conflict kome
with the name of a class or a method called indirectly. Thisfi®quent, but so dif cult to debug that avoiding this sgmtis
always worthwhile.

Indirect Notation Scalar Limitations

Another danger of the syntax is that the parser expects &soglar expression as the object. Printing to a filehasidlieed in
an aggregate variabkeem®bvious, but it is not:

DOES NOT WORK AS WRITTEN
say $config->{output} "This is a diagnostic message!";

158

What to Avoid

,and —all builtins which operate on filehandles—operate in annectifashion. This was fine when filehandles
were package globals, but lexical filehandles (see FildleaReferences, page 54) make the indirect object syntaXens
obvious. In the previous example, Perl will try to call the method on the object. The solution is to disambiguate
the expression which produces the intended invocant:

say { $config->{output} } "This is a diagnostic message!";

Alternatives to Indirect Notation

Direct invocation notation does not suffer this ambiguitgldem. To construct an object, call the constructor methiodhe
class name directly:

my $g = CGIl->new();
my $obj = Class->new(arg => $value);

For the limited case of filehandle operations, the datieigaso prevalent that you can use the indirect invocatiomcguyh if
you surround your intended invocant with curly bracketsothier option is to use the core module which adds
IO methods to lexical filehandles.

For supreme paranoia, disambiguate class method caltefusy appending to the end of class names, such|as
. Very little code does this in practice, however.

The CPAN module (a plugin for) can identify indirect
invocations during code reviews. The CPAN module can identify and prohibit their use in running programs:

warn on indirect use
no indirect;

throw exceptions on their use
no indirect :fatal;

Prototypes

A prototypeis a piece of optional metadata attached to a function detader. Novices commonly assume that these prototypes
serve as function signatures; they do not. Instead they $etw separate purposes: they offer hints to the parser togehthe
way it parses functions and their arguments, and they maolaifyvay Perl 5 handles arguments to those functions.

To declare a function prototype, add it after the name:

sub foo (&@);
sub bar %$) { ... }
my $baz = sub (&&) { ... }

You may add prototypes to function forward declarationsu Yoy also omit them from forward declarations. If you use a
forward declaration with a prototype, that prototype muspbesent in the full function declaration; Perl will give @type
mismatch warning if not. The converse is not true: you maytaha@ prototype from a forward declaration and include it for
the full declaration.

There’'s little reason to omit the prototype from a forwardldeation except for the desire to write too-clever code.

The original intent of prototypes was to allow users to defimeir own functions which behaved like (certain) builtpeoators.
Consider the behavior of the operator, which takes an array and a list. While Perl 5 wouldnadly flatten the array and

159

Modern Perl

listinto a single list at the call site, the Perl 5 parser kadhat a call to must effectively pass the array as a single unit so
that can operate on the array in place.

The builtin takes the name of a function and returns a string repreggitsiprototype. To see the prototype of a
builtin, use the form:

$ perl -E "say prototype CORE::push ;"
\@@

$ perl -E "say prototype CORE:keys ;"
\%

$ perl -E "say prototype CORE::.open ;"

*$@

Some builtins have prototypes you cannot emulate. In thaeses; will return
$ perl -E "say prototype CORE:system // undef "

undef

You cant emulate builtin function s calling convention.

$ perl -E "say prototype CORE::prototype // undef "
undef
Builtin function has no prototype.

Look at again:

$ perl -E "say prototype CORE::push ;"
\@@

The character represents a list. The backslash forces the esefeirencao the corresponding argument. Thus this function
takes a reference to an array (because you can't take ameéete a list) and a list of values. might be:

sub mypush (\@@)
{

my ($array, @rest) = @_;
push @$array, @rest;

Valid prototype characters includeto force a scalar argumentto mark a hash (most often used as a reference), avitich
marks a code block. See for full documentation.

The Problem with Prototypes

Prototypes can change the parsing of subsequent code gndatheoerce the types of arguments. They don't serve as docu-
mentation to the number or types of arguments functionsaxper do they map arguments to named parameters.

Prototype coercions work in subtle ways, such as enfor@aas context on incoming arguments:

sub numeric_equality($$)
my ($left, $right) = @_;

return $left == $right;
}

my @nums = 1 .. 10;

say "Theyre equal, whatever that means!" if numeric_equal ity @nums, 10;

... but donotwork on anything more complex than a simple expression:

sub mypush(\@@);

compilation error: prototype mismatch
(expected array, got scalar assignment)
mypush(my $elems =[], 1 .. 20);

Those aren't even theubtlerkinds of confusion you can get from prototypes.

160

What to Avoid

Good Uses of Prototypes
As long as code maintainers do not confuse them for full fioncsignatures, prototypes have a few valid uses.

First, they are often necessary to emulate and overridérsuivith user-defined functions. You must first check thati can
override the builtin by checking that does not return . Once you know the prototype of the builtin, use a
forward declaration of a function with the same name as the looiltin:

use subs push;

sub push (\@@) { ... }

Beware that the pragma is in effect for the remainder of tfike, regardless of any lexical scoping.

The second reason to use prototypes is to define compike-tionstants. A function declared with an empty prototype (as
opposed tao prototype) which evaluates to a single expression becormeastant rather than a function call:

sub PI () { 4 * atan2(1, 1) }

After it processed that prototype declaration, the Perltsdper knows it should substitute the calculated valueiefipenever
it encounters a bareword or parenthesized call tin the rest of the source code (with respect to scoping arilolitg).

Rather than defining constants directly, the core pragma handles the details for you and may be clearer to Head.
you want to interpolate constants into strings, the module from the CPAN may be more useful.

The final reason to use a prototype is to extend Perl's sytat@perate on anonymous functions as blocks. The CPAN module

uses this to good effect to provide a nice API with delayed patation. Its function takes
three arguments: a block of code to run, a regular expredsionatch against the string of the exception, and an optional
description of the test. Suppose that you want to test Perbfteption message when attempting to invoke a method on an
undefined value:

use Test:More tests => 1;
use Test::Exception;

throws_ok
{ my $not_an_object; $not_an_object->some_method() }
gr/Cant call method "some_method" on an undefined value/,
Calling a method on an undefined invocant should throw exce ption ;

The exported function has a prototype of . Its first argument is a block, which Perl upgrades to afleitiged
anonymous function. The second requirement is a scalarthiifieargument is optional.

The most careful readers may have spotted a syntax oddiapleoin its absence: there is no trailing comma after the énd o
the anonymous function passed as the first argument to . This is a quirk of the Perl 5 parser. Adding the comma
causes a syntax error. The parser expects whitespace gnatritma operator.

The “no commas here” rule is a drawback of the prototype synta

You can use this API without the prototype. It's slightly $esttractive:

use Test:More tests => 1;
use Test::Exception;

throws_ok (
sub { my $not_an_object; $not_an_object->some_method() }
gr/Cant call method "some_method" on an undefined value/,
Calling a method on an undefined invocant should throw exce ption);

161

Modern Perl

A sparing use of function prototypes to remove the need fer th builtin is reasonable. Another is when defining a custom
function to use with 48, Declare this function with a prototype of and Perl will pass its arguments in rather than
the package globals and . Thisis arare case, but it can save you time debugging.

Few other uses of prototypes are compelling enough to owerdbeir drawbacks.

Method-Function Equivalence

Perl 5's object system is deliberately minimal (see BlesRetkrences, page 110). Because a class is a package, &érl its
makes no strong distinction between a function stored inchkgge and a method stored in a package. The same builtin,
expresses both. Documentation and the convention ofigettte first parameter as can imply intent to readers of the
code, but Perl itself will treat any function of the appr@pe name it can find in an appropriate package as a method ifryo

to call it as a method.

Likewise, you can invoke a method as if it were a function—figualified, exported, or as a reference—if you pass in your
own invocant manually.

Both approaches have their problems; avoid them.

Caller-side
Suppose you have a class which contains several methods:

package Order;

use List::Util sum ;

sub calculate_price

{
my $self = shift;
return sum(0, $self->get_items());

If you have an object , the following invocations of this methadayseem equivalent:

my $price = $o->calculate_price();

broken; do not use
my $price = Order::calculate_price($o);

Though in this simple case, they produce the same outputatte violates the encapsulation of objects in subtle wétys
avoids method lookup altogether.

If were instead a subclass or allomorph (see Roles, page 105) of which overrode , calling the
method as a function would produce the wrong behavior. Arangke to the implementation of , such as
a modification of inheritance or delegation through —might break calling code.

Perl has one circumstance where this behavior may seemsaggelf you force method resolution without dispatch, haw d
you invoke the resulting method reference?

my $meth_ref = $o->can(apply_discount);

There are two possibilities. The first is to discard the mettalue of the method:

$o->apply_discount() if $o->can(apply_discount);

48Ben Tilly suggested this example.

162

What to Avoid

The second is to use the reference itself with method ini@tatyntax:

if (my $meth_ref = $o->can(apply_discount))

$o->$meth_ref();

When contains a function reference, Perl will invoke that refeewith as the invocant. This works even under
strictures, as it does when invoking a method with a scalataioing its name:

my $name = apply_discount;
$o->$name();

There is one small drawback in invoking a method by refergifittee structure of the program has changed between sttrang
reference and invoking the reference, the reference magngel refer to the current, most appropriate method. If the
class has changed such that is no longer the right method to call, the reference in will
not have updated.

If you use this form of invocation, limit the scope of the n&fleces.

Callee-side

Because Perl 5 makes no distinction between functions aridoaie at the point of declaration and becauseptssible
(however inadvisable) to invoke a given function as a fuorctr a method, it's possible to write a function callable idses.

The core module is a prime offender. Its functions manually inspecto determine whether the first argument is a likely
invocant. If so, they ensure that any object state the fanatieeds to access is available. If the first argument is fhigeby
invocant, the function must consult global data elsewhere.

As with all heuristics, there are corner cases. It's diftctd predict exactly which invocants are potentially valad & given
method, especially when considering that users can ciegiteoivn subclasses. The documentation burden is alscegrgaten

the need to explain the dichotomy of the code and the desaediol misuse. What happens when one part of the project uses
the procedural interface and another uses the object acte?f

Providing separate procedural and object interfaces torarli may be justifiable. Some designs make some technigoes
useful than others. Conflating the two into a single API wikate a maintenance burden. Avoid it.

Tie
Overloading (see Overloading, page 145) lets you give efasastom behavior for specific types of coercions and aeses

A similar mechanism exists for making classes act like Buailtypes (scalars, arrays, and hashes), but with more fapeci
behaviors. This mechanism uses the builtin; it is tying.

The original use of was to produce a hash stored on disk, rather than in memoiyallbwed the use of DBM files from
Perl, as well as the ability to access files larger than citild memory. The core module provides a similar system
by which to handle data files too large to fit in memory.

The class to which you a variable must conform to a defined interface for the spedita type. is
the primary source of information about these interfadesugh the core modules , and

are more useful in practice. Inherit from them to start, anerade only those specn‘lc methods you need to
modify.

, ,and define the necessary interfaces to tie scalars, arraydyasites, bu
, and provide the default implementations. If hasn't
confused you, the organization of th|s code might.

163

Modern Perl

Tying Variables
Given a variable to tie, tie it with the syntax:

use Tie:File;
tie my @file, Tie:File, @args;

..where the first argument is the variable to tie, the sddésthe name of the class into which to tie it, and is an optional
list of arguments required for the tying function. In theea$, this is the name of the file to which to tie the array.

Tying functions resemble constructors: , , or for scalars, arrays, hashes,
and filehandles respectively. Each function returns a nbejeab Wh|ch represents the tied variable. Both the and
builtins return this object, but most people ignore it indaef checking its boolification to determine whether a givariable
is tied.

Implementing Tied Variables

To implement the class of a tied variable, inherit from a coxedule such as , then override the specific
methods for the operations you want to change. In the cas¢ied @calar, you probably need to override and ,
may need to override , and can often ignore

You can create a class which logs all reads from and writesstakar with very little code:

package Tie::Scalar::Logged;
use Modern::Perl;

use Tie::Scalar;
use parent -norequire => Tie::StdScalar ;

sub STORE
my ($self, $value) =
Logger->log("Storing <$va|ue> (was [$$self])", 1);
$$self = $value;

sub FETCH

my $self = shift;
Logger->log("Retrieving <$$self>", 1);

return $$self;
}
1
Assume that the class method takes a string and the number of frames up the call stack aftwioi report the
location. Be aware that does not have its owmpmfile, so you must use to make it available.
Within the and methods, works as a blessed scalar. Assigning to that scalar referemenges the

value of the scalar and reading from it returns its value.

Similarly, the methods of and act on blessed array and hash references, respectively. The
documentation explains the copious methods they suppmoytp@ can read or write multiple values from
them, among other operations.

The option prevents the pragma from attempting to load a file for , as that
module is part of the fil&ie/Scalar.pm

164

What to Avoid

When to use Tied Variables

Tied variables seem like fun opportunities for clevernbssthey make for confusing interfaces in almost all cases,rdostly
to their rarity. Unless you have a very good reason for makinjgcts behave as if they were built-in data types, avoidtorg
your own ties.

Good reasons include to ease debugging (use the logged szlelp you understand where a value changes) and to make
certain impossible operations possible (accessing lalegeih a memory-ef cient way). Tied variables are less usefs the
primary interfaces to objects; it's often too dif cult andmstraining to try to fit your whole interface to that supigar by

The final word of warning is both sad and convincing; far tooaim code does not expect to work with tied variables. Code
which violates encapsulation may prohibit good and valiesusf cleverness. This is unfortunate, but violating thesetations
of library code tends to reveal bugs that are often out of yawver to fix.

165

What's Missing

Perl 5 isn't perfect, at least as it behaves by default. Sopt®mms are available in the core. More are available from the
CPAN. Experienced Perl developers have their own idea of &imideal Perl 5 should behave, and they often use their own
configurations very effectively.

Novices may not know how Perl can help them write programtebek handful of core modules will make you much more
productive.

Missing Defaults

Perl 5's design process in 1993 and 1994 tried to anticipatedirections for the language, but it's impossible to pcettie
future. Perl 5 added many great new features, but it alsoda@ppatibility with the previous seven years of Perl 1 thio&grl
4. Sixteen years later, the best way to write clean, maiatd@& powerful, and succinct Perl 5 code is very differeatrfrPerl
5.000. The default behaviors sometimes get in the way; iately, better behaviors are available.

The CPAN (see The CPAN, page 10) contains many modules agthpsadesigned to make your work simpler, more correct,
and more enjoyabfé. As you improve as a Perl programmer, you will have many opmities to use (and even to create) such
code in the right circumstances. For now, use these pragntasiadules regularly in your own code.

The strict Pragma

The pragma (see Pragmas, page 121) allows you to forbid (orable)ywarious language constructs which offer power
but also the potential for accidental abuse.

provides three features: forbidding symbolic referencequiring variable declarations, and forbidding the use of
undeclared barewords (see Barewords, page 156). While ttasional use of symbolic references is necessary to mantgul
symbol tables (barring the use of helper modules, such as), the use of a variable as a variable name offers the paggibil
of subtle errors of action at a distance—or, worse, the pihisgitf poorly-validated user input manipulating intefr@nly data
for malicious purposes.

Requiring variable declarations helps to prevent typosiable names and encourages proper scoping of lexicablas. It's
much easier to see the intended scope of a lexical variablevifiriables have or declarations in the appropriate scope.

has a lexical effect, based on the compile-time scope ofis Yiou may disable certain features of (within the
smallest possible scope, of course) with . See for more details.

The warnings Pragma

The pragma (see Handling Warnings, page 126) controls the tiagaof various classes of warnings in Perl 5,
such as attempting to stringify the value or using the wrong type of operator on values. It alsm&about the use of
deprecated features.

The most useful warnings explain that Perl had trouble wstdading what you meant and had to guess at the proper ieterpr
tation. Even though Perl often guesses correctly, disamalign on your part will ensure that your programs run cdlyec

The pragma has a lexical effect on the compile-time scope ofsés ¥ou may disable some or all warnings with
(within the smallest possible scope, of course). See and for more
detalils.
49See to start.

166

What's Missing

Combine with , and Perl 5 will display expanded diagnostic messages fir ea
warning present in your programs. These expanded diagsagime from . This behavior is
useful when learning Perl, but it's less useful in code dg@tbto production, because it can produce verbose error
output.

IO::Handle

Perl 5.6.0 added lexical filehandles. Previously, filedlas were all package globals. This was occasionally mesdyofien
confusing. Now that you can write:

open my $fh, >, $file or die "Cant write to $file: $\n";

...the lexical filehandle in is easier to use. The implementation of lexical filehandlestes objects; is an instance
of . Unfortunately, even though is an object, you can't call methods on it because nothinglteded the
class.

This is occasionally painful when you want to flush the bufiéthe associated filehandle, for example. It could be ay aa:

$th->flush();

... but only if your program somewhere contains . The solution is to add this line to your programs so that
lexical filehandles—the objects as they are—behave as atgbould behave.

The autodie Pragma

Perl 5's default error checking is parsimonious. If you'rd nareful to check the return value of every call, for example,
you could try to read from a closed filehandle—or worse, loata@s you try to write to one. The pragma changes
the default behavior. If you write:

use autodie;

open my $fth, >, $file;

...an unsuccessful call will throw an exception via Perl 5's normal exceptionchanism. Given that the most appro-
priate approach to a failed system call is throwing an exoepthis pragma can remove a lot of boilerplate code andvatiau
the peace of mind of knowing that you haven't forgotten toakha return value.

This pragma entered the Perl 5 core as of Perl 5.10.1. See for more information.

167

Index

circumfix operator, 60

prefix operator, 60
regex escaping metacharacter, 96

start of string regex metacharacter, 92

non-word boundary regex metacharacter, 92
non-digit regex metacharacter, 92

reenable metacharacters regex metacharacter, 96
global match anchor regex metacharacter, 98
escape sequence for named character encodings, 19
disable metacharacters regex metacharacter, 96
non-whitespace regex metacharacter, 92
non-alphanumeric regex metacharacter, 92

end of string regex metacharacter, 92

word boundary regex metacharacter, 92

digit regex metacharacter, 92

whitespace regex metacharacter, 92
alphanumeric regex metacharacter, 92

escape sequence for character encodings, 19
capturing regex metacharacters, 95

circumfix operator, 60

empty list, 21

postcircumfix operator, 60

non-capturing regex group, 95

zero-width positive look-ahead regex assertion, 96
zero-width positive look-behind regex assertion, 97
regex named capture, 94

numeric operator, 60

sigil, 142

zero or more regex quantifier, 90

numeric operator, 60

numeric operator, 60

numeric operator, 60

non-greedy zero or one regex quantifier, 91
numeric operator, 60

one or more regex quantifier, 90

prefix operator, 60
unary operator, 156

168

auto-increment operator, 61
prefix operator, 60

numeric operator, 60

non-greedy one or more regex quantifier, 91
operator, 62

character class range regex metacharacter, 93
numeric operator, 60

prefix operator, 60

numeric operator, 60

taint command-line argument, 146

enable warnings command-line argument, 127

disable warnings command-line argument, 127
file test operators, 133

numeric operator, 60
prefix operator, 60

dereferencing arrow, 52

directory test operator, 133

file exists operator, 133

file test operator, 133

readable file test operator, 133

enable baby taint command-line argument, 147
enable warnings command-line argument, 127
non-empty file test operator, 133

anything but newline regex metacharacter, 92
infix operator, 60

string operator, 61

flip-flop operator, 62

infix operator, 60

range operator, 22, 62

infix operator, 60

infix operator, 60

numeric operator, 60

circumfix operator, 60

infix operator, 46, 60

logical operator, 61

infix operator, 60

numeric operator, 60

substitution evaluation regex modifier, 98

Index

sigil, 53, 71
global match regex modifier, 98

bitwise operator, 61
case-insensitive regex modifier, 97

logical operator, 61
multiline regex modifier, 97 , 129

, 129

single line regex modifier, 97

bitwise operator, 61
extended readability regex modifier, 97 negation of character class regex metacharacter, 93

start of line regex metacharacter, 97
package name separator, 134

bitwise operator, 61

numeric comparison operator, 60 .tfiles, 126
Higher Order Per| 79
infix operator, 60 t/ directory, 126
regex bind, 89
string operator, 61 prefix operator, 60
fat comma operator, 41, 62 smart match operator, 98
zero or one regex quantifier, 90, 91 numeric comparison operator, 60
logical operator, 61 numeric comparison operator, 60

ternary conditional operator, 61

bitwise operator, 61
non-greedy zero or one regex quantifier, 91

bitwise operator, 61
character class regex metacharacters, 93
circumfix operator, 60 numeric comparison operator, 60
postcircumfix operator, 60

numeric comparison operator, 60
end of line regex metacharacter, 97

sigil, 35, 36, 41 numeric comparison operator, 60
n, 131
,131 circumfix readline operator, 130
, 131,154
, 74,131, 150, 154 bitwise operator, 61
, 154

bitwise operator, 61

regex metacharacter, 94
circumfix operator, 60

regex metacharacter, 94

.85 circumfix operator, 60
154 postcircumfix operator, 60
154 regex numeric quantifier, 90
, 154
154 circumfix operator, 60
, 40, 154
, 154 aliasing, 28
, 154 iteration, 28
, 154 allomorphism, 106
, 128 amount context, 4
, 49 anchors
end of string, 92
sigil, 37 start of string, 92
, 154
, 154 logical operator, 61
anonymous functions
default scalar variable, 6 implicit, 78
lexical, 28 names, 77
, 127 anonymous variables, 15
, 154 , 113
, 154 ,138
, 150 ,138
, 150 arguments
,148 named, 148
arity, 59
numeric operator, 60 , 139
sigil, 40 arrays, 13, 36
, 154 anonymous, 52
, 39
numeric operator, 60 interpolation, 40
, 146 , 39
, 114 , 39
, 155 references, 51
, 39
bitwise operator, 61 slices, 38

169

Modern Perl

, 39
, 39
ASCII, 18
associativity, 59
disambiguation, 60
left, 59
right, 59
atom, 89
, 84
attributes
default values, 103
objects, 101
(read only), 101
(read-write), 102
typed, 101
untyped, 102
pragma, 84
auto-increment, 61
, 122
pragma, 167
, 112, 156
code installation, 86
delegation, 86
drawbacks, 87
redispatch, 86
autovivification, 48, 57
pragma, 57

, 60
baby Perl, 3
barewords, 156
cons, 157
filehandles, 157
function calls, 157
hash values, 157
pros, 156
sort functions, 157
pragma, 112
, 143, 156
implicit, 143
Best Practical, 9
binary, 59
,18
blogs.perl.org, 9
boolean, 36
false, 36
true, 26, 36
boolean context, 5
buffering, 131
builtins
,18,131
,110
, 67,151
,134
, 31,130
,6
, 131, 159
, 133
,21,43
, 119
,71
, 39,43
, 130
, 119, 141, 143
, 43
, 27
, 27
,33
,35,71
7
, 90
,43
,6
,6
, 74,150, 153
, 7,149
, 121,135
, 18,129

170

, 132
,6
, 74
overriding, 161
, 48,100
, 39
, 131, 159
, 160
,39
, 132
, 130
,134
, 139
,6
, 131, 159
,5
, 39
, 149, 150, 157, 162
, 39
, 75,83
, 54,63, 76, 162
, 130
, 163, 164
, 164
,6
,134
, 39
,67,135
,43
, 68
, 127
,34

call frame, 69
, 87,139, 162
, 68, 127
, 68, 127
, 127
, 127
, 68,127
verbose, 127
case-sensitivity, 136
Catalyst, 84
,135
character classes, 93
pragma, 19
, 156
circular references, 58
circumfix, 60
class method, 101
, 109, 144
, 109
classes, 100
closures, 79

installing into symbol table, 142

parametric, 142

string comparison operator, 61

, 125
, 139
code generation, 141
codepoint, 17
coercion, 47,116, 153
boolean, 47
cached, 48
dualvars, 48
numeric, 47
reference, 48
string, 47
command-line arguments
, 146
, 127
, 127
, 147
, 127
pragma, 161
constants, 161
barewords, 157

Index

context, 3, 68
amount, 4
boolean, 5
conditional, 26
list, 4
numeric, 5
scalar, 4
string, 5
value, 5
void, 4
, 69
control flow, 23
control flow directives, 23
, 24
, 24
,23

ternary conditional, 25

, 23
CPAN, 10
, 11
, 138
, 138
,11
CPANTS, 138

, 138

,138
cpan.org, 9
, 118
, 138
,134

, 129
data structures, 55
, 57
dative notation, 158
, 55
, 18
defined-or, 46
logical operator, 61
default variables
,6
array, 7
scalar, 6
delegation, 86
dereferencing, 50
, 156
destructive update, 30
, 126
, 109
dispatch, 101
dispatch table, 76
, 138
distribution, 10, 137
, 106, 140
DRY, 115
, 36,48
dualvars, 36, 48
duck typing, 104
DWIM, 3, 47
dwimmery, 47
dynamic scope, 74

ef cacy, 118
empty list, 21
encapsulation, 72, 103
, 18
,18
encoding, 18, 19
, 156
, 154

Enlightened Perl Organization, 9

string comparison operator, 61

escaping, 16, 96
, 153
block, 119
string, 141
, 120

171

exceptions, 119
catching, 119, 153
caveats, 120
core, 120

, 120

, 119
, 120
rethrowing, 120
throwing, 119
throwing objects, 120
throwing strings, 119
exporting, 136

, 126, 138

filehandles, 129
references, 54
, 129
, 129
, 129
files
absolute paths, 133
copying, 134
deleting, 134
hidden, 133
moving, 134
relative paths, 133
removing, 134
slurping, 150
fixity, 60
circumfix, 60
infix, 60
postcircumfix, 60
postfix, 60
prefix, 60
flip-flop, 62
floating-point values, 20
false, 26
, i, 83
, 83
pragma, 135
, 134
, 151
, 133
, 132
, 132

fully-qualified name, 14
function, 63
functions

, 132

aliasing parameters, 66

anonymous, 75

, 132

avoid calling as methods, 163

call frame, 69
closures, 79
declaration, 63
first-class, 53

forward declaration, 63

,71
importing, 67
invoking, 63
misfeatures, 71
parameters, 64
Perl 1,71
Perl 4,71
predeclaration, 87
references, 53
sigil, 53
tailcall, 70

garbage collection, 58

string comparison operator, 61

genericity, 104
Github, 10
gitpan, 10
global variables
n, 131

Modern Perl

, 131
,131, 154
, 131, 150, 154
,154
, 154
, 154
, 154

, 154
, 154
, 154
, 154
,154
, 154
, 127

, 154
, 154
,154

, 155

, 71
tailcall, 87
greedy quantifiers, 91

string comparison operator, 61

,139
hashes, 13, 40
bareword keys, 156
caching, 45
counting items, 45
declaring, 40
,43
, 43
finding uniques, 45
,43
locked, 46
named parameters, 46
references, 52
slicing, 44
values, 42
, 43
heredocs, 17

identifiers, 13
idioms, 118
, 135
increment
string, 36
, 159
indirect object notation, 158
infix, 60
inheritance, 106
, 156
instance method, 101
integers, 20
interpolation, 16
arrays, 40
introspection, 113
,139
10 layers, 18
, 146
, 132
, 132,155, 159
IRC, 10
#catalyst, 10
#moose, 10
#perl, 10
#perl-help, 10
, 125
, 108, 139
, 125
, 125
iteration
aliasing, 28
scoping, 28

Larry Wall, 2
Latin-1, 18

172

string comparison operator, 61

left associativity, 59
lexical scope, 72
lexical shadowing, 73
lexical topic, 73
lexical warnings, 128
lexicals
lifecycle, 55
pads, 74
lexpads, 74
list context, 4
arrays, 39
listary, 59
lists, 22
, 21,36
looping directives
, 27
, 27
loops
, 33
control, 32
,31
, 29
labels, 33
,32
nested, 31
,32
,32
, 30
, 30

string comparison operator, 61

Ivalue, 14

match operator, 6
magic variables
, 74
maintainability, 117

Schwartzian transform, 149
, 85

memory management

circular references, 58
meta object protocol, 144
metacharacters

regex, 96
metaclass, 144
metaprogramming, 109, 141
method dispatch, 101, 111
method resolution order, 107
methods

112

avoid calling as functions, 162, 163

calling with references, 162
class, 101, 110
dispatch order, 107
instance, 101
invocant, 148
mutator, 102
resolution, 107
, 126, 138
modules, 10, 134
case-sensitivity, 136
, 143
pragmas, 121
Moose, 144
attribute inheritance, 107

compared to default Perl 5 OO, 109

, 106
, 107
inheritance, 106
, 108
metaprogramming, 109
MOP, 109
, 108

overriding methods, 108

Index

moose, 100
, 116
, 109
, 148
, 152
, 116
MRO, 107
pragma, 112
multiple inheritance, 107, 112
,28

names, 13

namespaces, 48, 49
fully qualified, 49
multi-level, 50
open, 49

string comparison operator, 61
nested data structures, 55

logical operator, 61
null filehandle, 8
nullary, 59
numbers, 20

false, 36

true, 36

underscore separator, 20
numeric context, 5
numeric quantifiers, 90
numification, 36, 47

objects, 100
inheritance, 107
invocant, 148
meta object protocol, 144
multiple inheritance, 107
octet, 18
, 123
00, 100
attributes, 101
, 112
, 110
class methods, 101, 110
classes, 100
constructors, 110
delegation, 86
dispatch, 101
duck typing, 104
encapsulation, 103
genericity, 104
has-a, 115
immutability, 116
inheritance, 106, 112, 115
instance data, 110
instance methods, 101
instances, 100
invocants, 100
is-a, 115
Liskov Substitution Principle, 116
metaclass, 144
method dispatch, 101
methods, 100, 111
mixins, 106
monkeypatching, 106
multiple inheritance, 106
mutator methods, 102
polymorphism, 104
proxying, 86
single responsibility principle, 115
state, 101
OO: composition, 115
,18
operands, 59
operators, 59, 61
n, 50
, 60
, 60
, 60

173

, 133
,61

, 22,62
, 60

,46, 61, 89

, 60

, 60

, 61,89

, 41,62

, 61
, 60

, 60
,61

, 61

, 61
,61

, 61

, 98
, 60

,61
arithmetic, 60
arity, 59
auto-increment, 61
bitwise, 61
characteristics, 59

, 61, 150
comma, 62
defined-or, 46, 61

, 61,125
fixity, 60
flip-flop, 62

,61

,61

,61
logical, 61

,61

, 89
match, 89

, 61,125

,61
numeric, 60

,61

, 17
, 17
, 89
quoting, 17
, 22
range, 22, 62
repetition, 62
smart match, 98
string, 61
, 62
,61

logical operator, 61

Modern Perl

orcish maneuver, 45 single quoting operator, 17
pragma, 145
overloading, 145 double quoting operator, 17
boolean, 145
inheritance, 146 compile regex operator, 89
numeric, 145 quantifiers
string, 145 greedy, 91
zero or more, 90
Eggkiges, 48 quote words operator, 22
bareword names, 156
namespaces, 49 range, 62
scope, 74 154
versions, 49 , 161
, 80 recursion, 69
parameters, 64 guard conditions, 70
aliasing, 66 reflection, 113
flattening, 64 references, 50
named, 148 n operator, 50
slurping, 66 anonymous arrays, 52
, 152 arrays, 51
pragma, 111 dereferencing, 50
partial application, 82 filehandles, 54
, 133 functions, 53
,133 hashes, 52
, 133 reference counting, 55
Perl 5 Porters, 10 scalar, 50
Perl Buzz, 9 weak, 58
Perl Mongers, 10 regex, 89
perl.com, 9 n,92
perl.org, 9 n,92
, 122 n,98
, 118, 140, 159 n,92
, 159 n,92
, 118 n,92
perldoc n,92
(search perlfunc), 2 n,92
(list path to POD), 2 ,95
(show raw POD), 2 ,92
(search perlfaq), 2 modifier, 98
PerlMonks, 9 modifier, 98
, 123 modifier, 97
Planet Perl, 9 modifier, 97
Planet Perl Iron Man, 9 modifier, 97
POD, 2 modifier, 97
polymorphism, 104 alternation, 95
postcircumfix, 60 anchors, 92
postfix, 60 assertions, 96
pragmas, 121 atom, 89
, 84 capture, 152
, 122,167 captures, 94
, 57 case-insensitive, 97
, 112 disabling metacharacters, 96
, 19 engine, 89
, 122,161 escaping metacharacters, 96
disabling, 121 extended readability, 97
enabling, 121 first-class, 89
, 135 global match, 98
, 112 global match anchor, 98
, 145 metacharacters, 92, 96
;111 modification, 152
scope, 121 modifiers, 97
, 122,142, 156, 166 multiline, 97
, 87,161 named captures, 94
useful core pragmas, 122 numbered captures, 94
, 19,122 one or more quantifier, 90
, 122 , 89
, 122,127 quantifiers, 90
precedence, 59 single line, 97
disambiguation, 60 substitution, 152
prefix, 60 substitution evaluation, 98
principle of least astonishment, 3 zero or one quantifier, 90
prototypes, 159 zero-width assertion, 96
barewords, 157 zero-width negative look-ahead assertion, 96
, 124,138 zero-width negative look-behind assertion, 97
proxying, 86 zero-width positive look-ahead assertion, 96
zero-width positive look-behind assertion, 97
, 139

174

Index

, 21

regular expressions, 89
right associativity, 59
roles, 105

allomorphism, 106

composition, 105
RT, 9
rvalue, 14

subsitution operator, 6
, 139
scalar context, 4
scalar variables, 13
Scalar::Util, 47
looks_like_number, 47
, 21, 36, 48, 58, 146
scalars, 13, 35
boolean values, 36
references, 50
Schwartzian transform, 149
scope, 14, 72
dynamic, 74
iterator, 28
lexical, 72
lexical shadowing, 73
packages, 74
state, 75
search.cpan.org, 10
short-circuiting, 25, 61
sigils, 15
, 142
,35,36,41
, 37
, 40
,53,71
variant, 36
, 148
slices, 14
array, 38
hash, 44
smart match, 98
, 157
Schwartzian transform, 149
state, 83
, 75
, 129
, 129
, 129
, 55
, 166
pragma, 142, 156
string context, 5
stringification, 36, 47
strings, 15
n ,19
n ,19
delimiters, 15
double-quoted, 16
false, 36
heredocs, 17
interpolation, 16
operators, 61
single-quoted, 16
true, 36
, 70
, 136
, 77
, 82
77
subroutine, 63
pragma, 87, 161
subtypes, 116
, 113
super globals, 153
alternatives, 155
managing, 153
useful, 154

175

symbol tables, 74, 115, 142
symbolic lookups, 13

tailcalls, 35, 70, 87
taint, 146
checking, 146
removing sources of, 147
untainting, 147
, 146
TAP (Test Anything Protocol), 124
, 166
ternary conditional, 25
, 126
, 84,126
, 126
, 126
, 126
, 78,126, 161
, 124,138
, 126
, 126
, 123,138
, 126
testing, 123
, 125
,125
, 125
,125
,123
plan, 123
, 124
running tests, 124
TAP, 124
, 126
The Perl Foundation, 10
Tim Toady, 2
TIMTOWTDI, 2
topic
lexical, 73
topicalization, 34
TPF, 10
wiki, 10

transliteration operator, 6
trinary, 59
true, 26
truthiness, 47
, 120, 155
typeglobs, 115, 142
types, 116, 153

unary, 59
unary conversions
boolean, 153
numeric, 153
string, 153
, 21,36
coercions, 21
underscore, 20
Unicode, 17
encoding, 18
unimporting, 135
, 156
, 49,139
, 162
, 87,139, 140
, 140
, 139, 140
, 140
, 140
Unix, 133
untainting, 147
UTF-8, 18
pragma, 19

value context, 5
variable, 14
variables, 15

Modern Perl

,6
, 148
anonymous, 15
arrays, 13
container type, 15
hashes, 13
lexical, 72
names, 13
scalars, 13
scope, 14
sigils, 15
super global, 153
types, 15
value type, 15
variant sigils, 14
, 49, 140
void context, 4

Wall, Larry, 2
, 69
, 68
warnings
catching, 128
fatal, 128
registering, 128
, 127
weak references, 58
websites
blogs.perl.org, 9
cpan.org, 9
gitpan, 10
Perl Buzz, 9
perl.com, 9
perl.org, 9
PerlMonks, 9
Planet Perl, 9
Planet Perl Iron Man, 9
TPF wiki, 10
word boundary metacharacter, 92

repetition operator, 62

logical operator, 61

YAPC, 10

176

	Preface
	Running Modern Perl
	Perl 5 and Perl 6
	Credits

	The Perl Philosophy
	Perldoc
	Expressivity
	Context
	Implicit Ideas

	Perl and Its Community
	Community Sites
	Development Sites
	Events
	IRC
	The CPAN

	The Perl Language
	Names
	Variables
	Values
	Control Flow
	Scalars
	Arrays
	Hashes
	Coercion
	Nested Data Structures

	Operators
	Operator Characteristics
	Operator Types

	Functions
	Declaring Functions
	Invoking Functions
	Function Parameters
	Functions and Namespaces
	Reporting Errors
	Advanced Functions
	Pitfalls and Misfeatures
	Scope
	Anonymous Functions
	Closures
	State versus Closures
	State versus Psuedo-State
	Attributes
	AUTOLOAD

	Regular Expressions and Matching
	Literals
	The qr// Operator and Regex Combinations
	Quantifiers
	Greediness
	Regex Anchors
	Metacharacters
	Character Classes
	Capturing
	Grouping and Alternation
	Other Escape Sequences
	Assertions
	Regex Modifiers
	Smart Matching

	Objects
	Moose
	Blessed References
	Reflection
	Advanced OO Perl

	Style and Efficacy
	Writing Maintainable Perl
	Writing Idiomatic Perl
	Writing Effective Perl
	Exceptions
	Pragmas

	Managing Real Programs
	Testing
	Handling Warnings
	Files
	Modules
	Distributions
	The UNIVERSAL Package
	Code Generation
	Overloading
	Taint

	Perl Beyond Syntax
	Idioms
	Global Variables

	What to Avoid
	Barewords
	Indirect Objects
	Prototypes
	Method-Function Equivalence
	Tie

