
PDL for impatient IDL users

Craig DeForest, deforest@boulder.swri.edu

Last rev: 21-Apr-2006

If you’re used to using IDL, you know what you want to do but might find perl
itself to be slightly confusing, because the language has a lot of elements that IDL does
not. Here’s a brief overview of the differences in syntax, to get you up to speed. It’s
oriented specifically toward IDL users who are trying out PDL to see what it can do.
Basic syntax, variable types, file I/O, and string handling get special treatment.in this
chapter, which is designed to get you going as quickly as possible.

The reference documentation that comes with perl itself is surprisingly easy to
use. On a UNIX system, man perl will give you a table of contents, and a myriad
of sub-pages such as man perlfunc will give you details on different parts of the
language. Some of those sub-pages are tutorials that are designed to be easier to use
than the reference pages.

PDL documentation comes as additional man pages, a help-and-apropos function
at the perldl prompt, and a locally browsable HTML tree. All of the component
software modules within PDL have command-line man pages. Within perldl, the
PDL command shell, you can type “?<subject>” to get reference material on individ-
ual subjects, or “??<subject>” to get an apropos list of documentation that contains
the keyword <subject>. You can point your web browser into the perl library tree in
(by default) /usr/local/lib/perl5/site_perl/ to find an online
version of the same information.

1 Basic syntax
Like IDL, perl uses mainly imperative syntax: you tell a notional daemon what to do in
small, successive steps. Unlike IDL, perl also has strong evaluative syntax: most com-
mands return a value that you can use in an expression. Many of the basic constructs
are the same, but the syntax is somewhat different.

The emphasis is somewhat different, too: while IDL distinguishes strongly between
statements (e.g. procedure calls) and expressions (e.g. function calls), perl/PDL does
not. Virtually everything in the language has a value, so you can make your code as
procedural (FORTRAN-like) or as evaluatve (Lisp-like) as you prefer. In practice, the
clearest, most maintainable code is usually somewhere in between those two extremes.

In addition to imperative and evaluative syntax you will find pipeline syntax as
well. Pipeline constructs are reminiscent of UNIX shell pipelines, but using “method
call” arrows instead of the vertical-bar character. For example:

1

2 1 BASIC SYNTAX

$newvar = $var->clip(-1,1)->acos->pow(2)->sin;

is a synonym for

$newvar = sin(pow(acos(clip($var,-1,1))), 2) ;

except that the pipeline form is much more readable, because you don’t have to figure
out the multiple layers of parentheses.

1.1 A Plea for Good Coding Style
Perl’s flexibility means that you can duplicate the coding style of most other languages
(including IDL), if you want to. It also means that you can write unbelievably weird and
unreadable code if you set out to do so. Good coding is your responsibility! In certain
circles, perl has a reputation for looking more like line noise than like programming.
This can be attributed to two things: regular expressions (which do look cryptic until
you know how to read them) and highly compressed coding style. It’s important to
code succinctly enough to be clear, and no more.

1.2 Command separators and blocks
In IDL, statements are notionally one line each, with a hack (the ’&’ connector) to
connect them on a single line. Perl cares not at all for line breaks, so all commands are
delimited by the ’;’ separator – just like C or Pascal. Conventionally, there is more or
less one statement per line, but that is not enforced by the compiler.

Rather than BEGIN and END, perl uses { and } to mark the boundaries of blocks
of code.

There’s an exception to this, which is that when you are using PDL interactively, in
the “perldl” shell, it usually executes whatever perl code you type as soon as you press
<ENTER>. See 1.3, below, for details.

1.3 Multiline commands at the shell
In IDL, if you want to enter a multi-command codelet at the shell, you have to enter all
the commands on a single line or else enclose them in a “.run” block. In PDL 2.4 and
above, the perldl shell automatically senses whether you have any grouping constructs
still open, and if you do it keeps accepting input until you close them. So (for example)
you can cut-and-paste most code straight from a working script into the perldl shell.

This makes for some differences between the IDL and perldl shell behavior. For
example, if you leave a quoted string open at the end of an IDL line of input, the IDL
interpreter closes the string for you. If you leave a quoted string open at the end of a
perldl line of input, the perldl preprocessor detects it and assumes that you meant to
enter a multiline string (ie one that contains newline characters).

The perldl shell prompt looks like this: “perldl>“.

1.4 Variants of if: postfix-if, unless, and ?: 3

The multiline prompt looks like this: “..{ >”. The “{” character will be re-
placed by all of the nesting constructs that are still open (here, just a single brace).

You can abort a multiline command with control-D (the EOF character).

1.4 Variants of if: postfix-if, unless, and ?:

The perl branch construct has more idioms than IDL’s. In particular, there is an
unless branch that acts exactly like if, but executes on false values rather than
true. Furthermore, the IDL construction “else if” is contracted into a single word:
“elsif”. For additional natural-language flavor there’s a postfix version of if/unless
that works like the postfix in English (example: “Go to bed if it’s after eight o’clock!”
becomes “go_to_bed() if($hour >= 20);”. The postfix structure is used
to express (in the code) that you expect a particular statement to get executed most of
the time, or to highlight important branchings in the code. An example:

while($a = <INPUT>) { # Read lines from file INPUT, until it’s empty.
chomp $a; # Kill the newline at the end of the line.
push(@lines,$a) unless($a =~ m/^#/);

}

This loop reads in lines from a file and puts them into the array @lines, skipping lines
that begin with the character ’#’. The postfix unless expresses (to other program-
mers) that the push is the intended usual execution path.

You can use postfix-if/unlesswith multiple commands by including a do block:

do {<stuff>} if(<test>); # alternative form of if
do {<stuff>} unless(<test>); # alternative form of unless

There’s another variant of if that C programmers will recognize: the ternary operator
“?:” is an expression form of if that is especially handy for quick exceptions in
assignments. For example, you might see the perl code

printf "Found %d %s\n", $i, ($i==1 ? "line" : "lines");

which handles singular/plural distinctions and is succinct. (You can read more about
the ternary operator in section ??

1.5 Loop constructs: for, foreach, while, until, do

perl has the usual collection of looping constructs. There is quite an array, so you can
pick the one that’s most convenient for you.

4 1 BASIC SYNTAX

for loops The loop construct that is most similar to IDL’s for loop is:

for $i(1..10) { <do stuff> }

which will assign the values 1 through 10 to $i, in sequence, and execute the com-
mands in the block each time. There are several variants of for. In particular, you can
replace the iteration expression with any old list of values:

for $i(@list) { <do stuff> }

iterates over all the elements of @list, in order, rather than over a numerical range. You
can even specify the list explicitly:

for $i(’foo’,’bar’,’baz’,17,1) { <do stuff> }

will execute your code with $i set to each of those comma-delimited values, in order.
Because this is similar to the behavior of the UNIX csh’s foreach construct, you can
also use “foreach” instead of “for” – they’re synonyms..

Don’t be confused if you encounter a loop with no explicit iterator at all! It’s quite
legal to say

for(1..10) { <do stuff> }

That will use perl’s default operand $_ as an iterator. Remember, $_ works in most
cases like a regular variable except that you can sometimes omit its name for brevity.

There’s also a three-element version of for that follows the C language rather than
FORTRAN:

for($i=0; $i <50; $i++) { <do stuff> }

This three-argument form of for has an initializer, a test, and an incrementer. The
initializer sets up the loop, the test (which can be any Boolean expression) is evaluated
at the top of the loop, and the incrementer is executed at the end of the loop.

while loops The while construct looks a lot like the IDL while:

while(<boolean>) { <do stuff> }

until loops The until construct is just like while, but the sense of the boolean
expression is inverted:

until($i==10) { print $i++; }

will print “0123456789” (provided that $i is undefined to start with).

1.6 Loop exits: next and last 5

Post-checked loops and do To get a loop that always executes at least once, you can
use do (which is similar to IDL’s do):

do {<stuff>} while(test);
do {<stuff>} until(test);
do {<stuff>} if(test); # alternative form of if
do {<stuff>} unless(test); # alternative form of unless

1.6 Loop exits: next and last
You can iterate a loop prematurely, or exit the loop entirely, anywhere within the loop
block, by saying next or last. That’s handy if you have several exit conditions and
want to exit from the middle of the block of code: it prevents your “hot code” from
being nested in several levels of if statements. Usually it pops you out of the innermost
loop you’re in, but you can exercise greater control; see the perl man page for details.

Here’s an example:

for $i(1..10) {
next if($i==5);
print $i;

}

will print “1234678910”, because the 5 case gets skipped by the next.
Neither next nor last works with do blocks, for reasons that are historical,

but they do work in naked blocks, so you can enclose your do block inside another
block to make them work properly; this is explained in more detail in the perl man
page. If it doesn’t make sense to you, you probably don’t need to know.

2 Variables and Expressions
Perl variables come in four basic sorts: scalars, which hold a single value; lists, which
can hold a bunch of scalars indexed by number (they’re also called arrays but are quite
unlike IDL arrays; see below); hashes, which can hold a bunch of scalars indexed by
string (sort of like IDL structures, but more general and without the arbitrary restric-
tions); and refs, which are like pointers with built-in crash protection. PDL adds a new
type of variable, also called a PDL or, in English, a “piddle”, that is closely analo-
gous to an IDL array: it is useful for holding millions of scalar values all of the same
type (though you can also use PDLs to hold individual values). PDLs (the variables)
are the bread-and-butter variable type for scientific computing with PDL (the language
extension).

In IDL, you refer to variables by name alone. In perl/PDL, variables always have
a sigil in front of them to identify both that they are variables, and what kind of value
you expect to get out. In IDL, you’d say

A = 5 ; assign 5 to the variable A (short int by default)

6 2 VARIABLES AND EXPRESSIONS

B = indgen(5) ; assign [0,1,2,3,4] to B (short int by default)
C = findgen(1e6) ; assign [0..999999] to C (floats)
D = {a:1,b:2,c:3} ; Set D to be an IDL structure</PRE><P>

In perl/PDL, the analogous commands are:

$a = 5; # assign 5 to the perl scalar A
@b = (0..4); # assign the list (0,1,2,3,4) to B
$c = xvals(1e6); # Assign the sequence 0..999999 to C.
%d = (a=>1,b=>2,c=>3); # Set %d to be a perl hash.

The sigils help sort out what’s what, and also divide up the namespace – so you can
simultaneously have a scalar variable $a, a list @a, a hash %a, and a subroutine called
a. The syntax keeps them straight. That can seem confusing if you’re used to the idea
of “one identifier, one thing” in IDL – but putting sigils in front of the identifier expands
the name space and prevents collisions like the infamous array–subroutine ambiguity
in IDL. In general, scalar values are denoted by ’$’, lists are denoted by ’@’, and hashes
are denoted by ’%’.

A caveat: while @a is a list, its elements are themselves scalars – so $a[5] is
element number 5 from @a, and @a[5,6,7] is a list of three elements from @a.
@a[5] is a trivial list of one element from $a. In some cases there is a difference
between a list of one element and the element itself (see §3.1)

As far as perl itself is concerned, PDL variables are special, magic (yes, that is a
technical term) perl scalars. That is less confusing in practice than it may sound – it
just means that, anywhere you can put a single perl scalar value, you can put a PDL
that contains (in principle) millions of values. For example, you can create a perl list
of PDLs, each of which contains a complete FITS image.

2.1 Scalars vs. IDL variables

IDL is a strictly typed language. Its variables have a particular type (e.g. short) that
they retain until they are destroyed. Ordinary perl variables (not PDLs) are polymor-
phic: they change type according to use. So you can treat numeric values as strings
and they work correctly; or you can use numeric values without regard for their initial
type, and they will work correctly. This is useful, for example, in loops. In IDL, loops
crash by default after 32,767 iterations. That’s because loop variables are short integers
by default, and after 32,767 iterations the loop variable overflows to become -32,768.
In perl that never happens – the variable gets promoted to an appropriate type that can
contain the value. Similarly, if you have a number and you want to put it into a string,
you can just use it in a string context and you will get What You Want.

Like IDL scalars, perl scalars can represent the undefined value. Unlike IDL, perl
deals gracefully with undefined values. You can test whether a variable is defined or
not, using the built-in boolean function defined(), but if you don’t bother and just
use an undefined value in an expression, it will evaluate as the empty string, 0, or false,
whichever is appropriate.

2.2 Lists vs. IDL arrays 7

2.2 Lists vs. IDL arrays
Perl lists are designed for handling short to midsized collections of things. Each ele-
ment of the list has a separate scalar (or ref) value, so that perl lists can be completely
heterogeneous. Perl has provision for handling undefined values, so you can leave
some elements in the middle of a list undefined. Lists have some very nice features
that IDL arrays lack. In particular, you can index elements off the end of the list and
they will be automagically created (with the undefined value). Or you can index ele-
ments from the back of the list instead of from the front, by using negative indices. In
IDL:

A = INDGEN(10)
PRINT, A[10] ; this makes IDL throw an exception.
PRINT, A[-1] ; this also throws an exception.

In perl:

@a = 0..9;
print $a[10]; # prints nothing (element is undefined)
print $a[-1]; # prints ’9’.

Notice that the elements have the ’$’ sigil rather than the ’@’ sigil. That’s because
we’re asking for a scalar value.

2.3 PDLs vs. IDL arrays
PDLs are very similar in concept to IDL arrays: they have fixed sizes and types. But
unlike IDL arrays, PDLs can contain out-of-band BAD values. You can fake this in IDL
by sticking ’nan’ into floating-point arrays; but the integer types have no bad-value flag.
The bad value just marks a particular element as unusable for whatever reason; further
calculations that use the bad value just silently return the bad value themselves, so that
you can propagate missing values in your data. You can also index and modify PDLs
with rather more facility than IDL arrays; that’s described in the Chapter ??

2.4 Hashes vs. IDL structures
Like IDL structures, perl hashes associate keyword/value pairs. The keyword is a
string, and the value is something that could be contained in a variable. In PDL, as
in IDL, each value can itself refer to any valid data structure in the language.

Perl hashes are considerably more flexible than IDL structures. In particular, if
your perl code refers to a hash value that isn’t present, you just get the undefined value,
rather than throwing an exception (as it would in IDL). You can add new keyword/value
pairs to your hash just by assigning to them with ’=’, rather than having to define a new
hash. Here’s an example. IDL code: add keyword/value pair (’B’,2) to structure A:

W = WHERE(STRUPCASE(TAG_NAMES(A)) EQ ’B’)
IF W(0) EQ -1 THEN ADD_TAG(A,’B’,2) ELSE A.B = 2

8 3 EXPRESSIONS

perl code: add keyword/value pair (’B’,2) to hash %a:

$a{’B’} = 2;

2.5 Perl refs
Refs are very easy to use in perl. They’re a common way to “roll up” a complex data
structure into a single perl scalar that you can hand around. They’re impervious to most
of the “gotchas” of C pointers, and they’re more flexible than IDL pointers.

In general, you make a ref to something by naming the something, and putting a
backslash in front of it. You dereference a ref by putting the appropriate sigil in front
of the ref itself:

$aref = \$a; # aref is a ref to the scalar $a
$A = $$aref; # $A gets the value of $a (case-sensitive!).
$A = ${$aref}; # Another way to say the same thing, less ambiguously
$bref = \@b; # bref is a ref to the list @b.
@B = @$bref; # @B gets a copy of @b.
$B = ${$bref}[2]; # $B gets the element #2 of @b
$B = $bref->[2]; # $B gets the element #2 of @b

The last form is common for both array elements and (with curly braces, as in ’$hashref->{"KEY"}’)
hash values.

Perl keeps a reference count for everything living in its memory, so garbage collec-
tion is easy and automatic. You also never have to worry about dangling refs, because
nothing is ever deallocated until its reference count reaches 0. In practical terms, data
hang around until you have eliminated all access paths to them; then the data evaporate
silently.1

Refs are useful any time you want to avoid making an extra copy of perl data (e.g.
if you pass a ref into a subroutine you don’t end up making a copy of the whole original
list or hash or whatever), or any time you want to encapsulate a hash or list into a single
scalar.

PDL arrays are implemented “under the hood” as refs to opaque objects with a
language interface written in C.

3 Expressions
Perl expressions are far more powerful than IDL expressions, largely because of the
branching constructs that are borrowed from C. In particular, the ’and’ and ’or’ oper-
ators (and their higher-precedence versions ’&&’ and ’||’) are lazy (they only evaluate
the second argument if it will affect the truth of the result), so you can use them as

1Like all reference-based garbage collectors, perl’s garbage collector gets confused by recursive struc-
tures. So if you have a collection of refs that points to itself, none of them will ever be deallocated unless you
explicitly break the recursion before letting go of your last ref to the variable. This comes up surprisingly
rarely, but deserves mention.

3.1 Typing and context: 9

branching constructs; and (where appropriate) they return their first true argument, so
you can very tersely say:

$val = $passed || $loaded || $default;

and $val will get the first true value between the three terms on the right-hand side.
The equivalent IDL code is:

if ((size(default)(size(default)(0))+1) ne 0) then $
value = default

if ((size(loaded)(size(loaded))(0))+1) ne 0) then $
if (loaded ne 0) then value = default

if ((size(pass)(size(pass)(0))+1) ne 0) then $
if (pass ne 0) then val=pass

The IDL code is complicated by the need to explicitly check the validity of each pa-
rameter, and the non-laziness of the boolean .and. and .or. operators.

Like C, perl includes a ternary operator that allows you to insert explicit condition-
als into your expression. Some folks don’t like it, but the ternary operator can make
some odd assignments clearer. Here, the first line returns the arcsine of $s or (if $s is
out of range) the arcsine of 1/$s. The second line returns an axis label string depending
on whether the variable $var contains a FITS header.

$arcsin = (abs($s) > 1) ? asin(1/$s) : asin($s);
$title = (defined $var->hdr->{NAXIS}) ? $var->hdr->{CTYPE1} : ’(Arbitrary)’);

The presence of side effects can be surprising at first but is very helpful:

$a = $data++;

is more compact and clearer than the IDL equivalent:a = data

a = data
data = data + 1

Of course, you can do it that way if you want:

$a = $data;
$data = $data + 1;

3.1 Typing and context:
Since perl does behind-your-back typing for normal perl variables, each expression has
a context in which it is evaluated. The context tells the expression what type is should
be. For example, the left-hand argument of && is evaluated in Boolean context, so
whatever arithmetic or string value comes from the expression, it gets coerced into a
Boolean value. Contexts are void, scalar and list. Void is the context for values that are

10 3 EXPRESSIONS

going to be ignored (e.g. function calls that don’t actually do anything with their value –
where, in IDL, you’d use a procedure call). The scalar context comes in several flavors:
Boolean, arithmetic2, string, and ref. The basic idea behind contexts is that most of the
time they allow you to pretend that your perl variable or expression is whatever type is
appropriate, and let the language take care of the casting and conversion details.

The largest context difference is between list and scalar context. Perl lists act dif-
ferently depending on whether you are seeking a scalar or list value. For example, if
you assign a list value to a scalar variable, the scalar gets the number of elements in the
list:

@a = (4,5,6); # @a gets the list (4,5,6).
$a = (4,5,6); # $a gets the number of elements (3).

That conversion may sound confusing but it’s actually quite useful when dealing with
lists. For example, you can say

if($count == @a) { <do some stuff> }

to do some stuff if @a has exactly $count elements, or

if(@a) { <other stuff> }

to do other stuff if @a has any elements at all. (here, if is expecting a boolean value,
so @a is evaluated in scalar context, yielding the number of elements. If the number is
nonzero, it counts as true.

Because perl has no way of knowing if a perl scalar is meant as a number or string,
there are different operators for comparing strings and numbers. The string comparison
operators are the two-letter comparison operators that you’re used to in IDL (like ’eq’),
while the numerical comparisons are more similar to the C language operators (like
’==’).

Using IDL-like comparisons is a trap for new users: eq converts its arguments
to strings (“evaluates them in string context”, in perlspeak), and then compares the
strings lexically. This normally works OK, since the string representation of two equal
numbers should themselves be equal. But it’s very inefficient compared to == if you
are trying to do arithmetic comparison. The related gt and lt operators don’t work
properly on numbers, because lexicographic (string) order is different than numeric
order.

In general, use the <, ==, >, and <=> operators for numbers, and the related lt,
eq, gt, and cmp operators for strings.

3.2 PDL variables and context:
PDLs are strongly typed: when you create a PDL, it gets a particular representation
and stays that way. The basic types are similar to the IDL types: byte, short, ushort,
long, ulong, float, and double. (Complex numbers are supported as a subclass of PDL;

2Arithmetic context has subtleties involved with integer and floating-point context. These work the same
way as IDL expressions: all elements of an arithmetic expression are promoted to the highest-precision type.

3.3 Assignments and Dataflow 11

see the appropriate section.) This fixed-type behavior is confusing to many perl users
but should be familiar to you from your IDL experience.

Perl has three main contexts that affect the behavior of PDLs: arithmetic, boolean,
and string.

Arithmetic context is what you get if you use PDLs in the usual way – adding,
subtracting, and such. In numeric context, PDLs act “just like” IDL arrays: normal
math operations act elementwise, and each array preserves its storage class (char/byte,
short-int, long-int, float, double, etc.).

Boolean context is what you get if you use a PDL in a branch statement like if
or while or even the && and || operators. Multi-element PDLs are not allowed in
this context; that is similar to IDL. Single-element PDLs are treated as TRUE if they
are nonzero and FALSE if they are zero. That is the same behavior as practically every
computer language on the face of the planet except IDL (which make even integers
FALSE and odd integers TRUE), and INTERCAL3, so don’t be confused.

String context is what you get if you use a PDL with a perl operator that normally
expects a string argument (like pattern matching or the eq operator or, most commonly,
the print statement). When you use a PDL in string context, it’s converted to a
human-readable string suitable for printing. The string is, in general, not convertible
back into a PDL without some effort. Because string conversion is intended for use with
print, PDLs that are moderately large (more than 10

4 elements) don’t get converted
– the string that you get back is “TOO LONG TO PRINT”. String context is easy to
remember as “just” a way to give you direct access to the output of print: use a PDL
as if it were a string, and you get the string that would be printed.

3.3 Assignments and Dataflow
PDL maintains a notion of “data flow”, in which changes in the contents of one PDL
automagically flow back to related PDLs. Used sparingly, data flow is both powerful
and addictive. In combination with the slicing and indexing operators, data flow lets
you parallelize tasks that are inaccessible from IDL’s limited vector syntax (and that
would hence require slow interpreted loops in IDL).

Lazy copying of data is one aspect of dataflow. Sometimes you want to pass around
an array but don’t want to make a copy of it. No problem: the normal assignment
operator (=) works by making a duplicate pointer to the underlying data structure of
your PDL variable, so (for example)

$a = $b;

is computationally very cheap: $a and $b now point to the same region of memory.
In addition, there’s a separate elementwise assignment operator (.=) that actually

copies elements into an existing data structure. So the statment

$a .= 5;

3INTERCAL stands for “Computer Language With No Pronounceable Acronym”; some claim that it is a
joke, but others do apparently useful work in it. You might want to visit the online Intercal reference manual
http://www.muppetlabs.com/~breadbox/intercal-man/home.html.

12 3 EXPRESSIONS

copies the value 5 into every element of $a. If you have just said $a=$b;, as above,
then $b changes too. This is surprising to many IDL users, because IDL always makes
explicit copies, so the two forms of assignment are merged into a single operation.

If you want an actual copy of a PDL, you can explicitly ask for one:

$a = $b->copy;

That is more computationally expensive, but isolates $a and $b from one another.
Dataflow works with most of the slicing and indexing operators, so that subfield

operations work correctly:

$a->(5:7,2:3) .=0;

clears a rectangular subregion of $a, just like the related IDL command. But, because
the dataflow relationship is preserved, you can do more interesting things:

$a = zeroes(3,3);
$a->diagonal(0,1) .= pdl(1,2,3);
print $a;

prints a diagonal (scaling) matrix:

[
[1 0 0]
[0 2 0]
[0 0 3]

]

Think of dataflow as a generalization of the lvalue subfields in IDL. In IDL, you can
say “A(2:5,3:5)=0” to assign a value to a subfield of the array A.

In PDL, that relationship is taken to its natural extreme: subfields of the PDL $a
stay connected to $a unless you disconnect them explicitly:

$b = $a->(2:5,3:5);
$c = $b->(1,1);
$c .= 0;

assigns 0 to the (1,1) element of $b, which flows back to the (3,4) element of $a.

3.4 Headers and ancillary information
Headers: PDL variables contain more information than IDL variables. Each PDL has
a “header” attached to it, for use in storing metadata about the PDL itself. The header
is a hash ref (that is to say, a pointer to an array that’s indexed by keyword; the IDL
equivalent is a pointer to a structure). The header is not allocated until you use it for
the first time. You can access the header with the gethdr, sethdr, hdr, and fhdr
methods:

3.5 Variable scoping 13

$a->sethdr(\%hdr); # Set the header to an existing hash
$hdr_ref = $a->gethdr # Get a ref to the header.
$hdr2 = $a->hdr_copy; # Copy the header.
$a->hdr->{CTYPE1} = "Lon"; # Set a header value (safely)
$a->fhdr->{CtYpE2} = "Lat"; # Set FITS keyword (case insensitive)

hdr and fhdr automatically generate a header if there isn’t one present: you just use
it as if it exists already. If no header exists, then gethdr will return the undefined
value. The only difference between hdr and fhdr is that fhdr creates a “tied hash” that
takes the place of a hash but behaves more like a FITS header – in particular, it automatically
includes SIMPLE and END cards, and the keywords are case-insensitive (normal hashes are case
sensitive).

Inplace flag: In addition to header information, there’s a flag (the “inplace” flag)
that you can set and clear in the PDL using the inplace method. The inplace flag is
used to prevent unnecessary memory usage: if you say

$a = cos($b); # normal usage

then $a gets new memory allocated. Alternatively, you can say

$a = cos($b->inplace); # in-place usage saves memory

and $b will be modified in-place in memory. Rather than assign a new variable, you
can even say just

$b->inplace->cos;

and $b will be modified in place. You use inplace anywhere that, in IDL, you’d use
temporary -- the difference is that temporary undefines its argument, while
inplace keeps it around.

If you want to make your own functions inplace-aware, you can either check
the inplace flag explicitly or else use the new_or_inplace method to allocate your
output variable:

$out = $in->new_or_inplace;
... # (fill up $out here)
return $out;

3.5 Variable scoping
In IDL subroutines, all variables are local: there’s no way (short of using a common
block) to get access to global variables. In perl, all variables are global by default – if
you want to hide them, you have to declare them local using the my modifier (as in “my
$pi = 3;”). This is something of a trap for IDL users: it’s easy to forget to localize
your variables, and then scrozzle them somewhere else. On the other hand, this is a

14 3 EXPRESSIONS

real boon for writing quick-and-dirty routines. If you want an explicit reminder then
you can say “use strict;” at the top of your subroutine or script – see the perl
documentation for details.

As with everything else, you can fine-tune your variable scoping. The localmod-
ifier does run-time dynamic scoping, which comes in handy in special circumastances;
and the our modifier makes a variable explicitly global.

3.6 Perl/PDL expressions and operators
Perl has more operators than IDL does, and each operator’s behavior has more nuances
than those of IDL. Here is a brief catalog most of the perl operators. (See the ’perlop’
man page for more). They’re listed in descending order of precedence.

Since the operators act slightly differently on PDLs and on perl scalars, they are
listed separately. Most operators do more or less what you’d expect: they act elemen-
twise where possible, and by stringifying the PDL where that makes the most sense.
There are two notable exceptions: ’x’, the repetition operator, is actually matrix multi-
plication when applied to PDLs; and ’.=’, the string concatenation operator, has been
pre-empted for an elementwise assignment (see below).

Dereference operator (’->’): This is borrowed (and extended) from C’s dereference-
a-pointer-to-a-struct operator; it is a generic operator to dereference a method call or
act on the object pointed to by a ref. Examples:

$v1 = $hash->{VAR1}; # Get item from a hash ref
$v2 = $array->[5]; # Get item from an array ref
$pdl->wfits("foo.fits"); # method call
$rad = $xy->pow(2)->sum->sqrt; # Pipeline syntax

PDL also uses the single arrow operator to generate rectangular slices of large arrays:

$subfield = $bigarray->(2,3:5); # items 3-5 from col. 2

Don’t confuse the single-arrow with the double-arrow operator that’s used to identify
hash fields! (below)

Autoincrement and autodecrement (’++’, ’--’): These act like the C language
autoincrement and autodecrement operators: they return their argument and (as a side
effect) either increment or decrement it. Depending on placement, the side-effect hap-
pens before or after the value is grabbed:

$a = 5;
print ++$a, ", ";
print $a++, ", ";
print $a, "\n";

will print “6, 6, 7”.

3.6 Perl/PDL expressions and operators 15

Table 1: Perl operators and precedence, and their actions on PDLs. Items with a “*”
mark are described in more detail in the text.

Prec. Op. Associativity (side

of first grouping)

Action on perl scalars Action on PDLs

1 () NA Grouping and function eval. Identical to perl scalars.

2 -> Left Dereference a ref or a method Dereference a method or slice a PDL *

3 ++, -- Either (Unary) Increment/decrement in-place. Elementwise *

4 ** Right Exponentiation Elementwise

5 ! Right (Unary) Logical negation Elementwise

5 ~ Right (Unary) Bitwise negation (bit flipping) Elementwise - gets coerced to long int.

5 \ Right (Unary) Reference operator Identical to perl scalars.

5 +, - Right (Unary) Arithmetic no-op/negation Elementwise

6 =~, !~ Left String operation binding Acts on stringified PDL

7 *, /, % Left Multiply, divide, and modulus Elementwise *

7 x Left Repetition operator Matrix multiplication *

8 +,- Left Addition and subtraction Elementwise

8 . Left String concatenation Acts on stringified PDL

9 <<,>> Left Bit-shift operator Elementwise - gets coerced to long int.

10 Named Right (Unary.) Named operators - various Acts on stringified PDL *

11 <, >,

<=, >=

NA Arithmetic comparisons Elementwise *

11 lt, gt,

le, ge

NA String (lexical) comparisons Forbidden

12 ==, !=,

<=>

NA Arithmetic equivalence Elementwise *

12 eq, ne,

cmp

NA String equivalence Elementwise *

13 & Left Bitwise AND Elementwise logical AND

13 |,^ Left Bitwise OR and XOR Elementwise logical OR and XOR

14 && Left Lazy Boolean logical AND Scalar (rejects multi-element PDLs)

15 || Left Lazy Boolean logical OR Scalar (rejects multi-element PDLs)

16 .., ... (none) Range operators Acts on stringified PDL

17 ?: Right (Ternary) Ternary conditional operator L:Scalar; M,R: identical to perl scalars.

18 = Right Assignment Assignment-by-reference *

19 +=,

etc.

Right In-place arithmetic modifiers Elementwise *

20 „=> Left List separators Identical to perl scalars *

16 3 EXPRESSIONS

Arithmetic multiply, divide, and mod (’*’,’/’,’%’): The mod (%) operator is
a true mathematical modulus rather than the more common sign-inverting variety:
$a % $b. is always on the interval [0,$b) provided that $b is positive, and on the
interval ($b,0] provided that $b is negative. PDL generalizes mod a little further even
than perl does: perl % always coerces its arguments to integers, while PDL % allows
floating point operands. Hence, this little wrinkle:

print 3.3 % 2.7, ", ";
print pdl(3.3) % pdl(2.7),"\n";

prints “1, 0.6”. In general, if you use PDLs you get the more general behavior; but
if you rely on it you must be careful always to use at least one PDL argument to %.

Repetition and matrix multiplication (’x’): When both arguments are ordinary
perl scalars, ’x’ is a useful repetition operator – e.g.

print "-" x 79;

will print a full line of 79 dashes – but PDL co-opts it as matrix multiplication. Ma-
trices are addressed in (X,Y) order rather than (R,C) order – so they look correct on
screen and the expression “$m x $colvec” acts correctly, but indexing is reversed from
standard math textbooks. There is a subclass of PDL called “PDL::Matrix”, that inter-
changes the first two dimensions so that you can index your matrices in (R,C) order if
you want.

1-D PDLS are row vectors; you have to transpose them or insert a dummy 0th
dimension to get column vectors. see ??

Named perl operators: Perl has a large number of built-ins that can be called
as either functions (using “name(arg1,arg2,...)” syntax) or operators (using “name
arg1,arg2,...” syntax). When you use those functions as operators, they get this prece-
dence and associate on the right – so “print splice @a,2” does the splice first
and then the printing, just like you’d probably hope. In general, the built-ins are string
operators so applying them to PDLs simply stringifies the PDL.

Arithmetic comparison and equality (’==’, ’!=’, ’<’,’>’,’<=’,’>=’,’<=>’): These
operators act elementwise, so you get out an array of values. For the normal compari-
son operators, all the elements are either 0 or 1, indicating the truth of the corresponding
comparison. The spaceship operator (’<=>’) deserves special mention. It returns -1, 0,
or 1, depending on whether the first argument is smaller then, equal to, or greater than
the second argument. You can use these operators with multi-element PDL variables to
do threaded comparisons, just not in a Boolean context (which needs exactly one scalar
value).

String comparison and equality (’eq’, ’ne’, ’lt’, ’gt’, ’le’, ’ge’, ’cmp’):
These operators do not apply directly to PDLs, but they deserve special mention be-
cause they resemble the numeric comparison operators in FORTRAN and IDL. The
string comparisons operate on perl scalars, and use lexical ordering rather than numer-
ical ordering. That’s great if you’re (e.g.) sorting file names, but horrible if you’re
actually trying to do numeric comparisons. Don’t be confused.

Assignment by reference (’=’): This is the normal assignment operator for perl,
and when you apply it to a PDL it will assign the whole PDL at once, as a reference,
without copying any actual data.

17

Loading your programs: .pdl files, .pm files, cut-n-paste
PDL offers two main ways to access code. There’s an autoloader that acts similar

to the IDL !path mechanism (but streamlined), and of course the usual perl module
syntax. Although the autoloader has some advantages over the IDL autoloader, it is
mainly used for one-off code and project-specific development. General purpose, pol-
ished code tends to get collected into perl modules that are explicitly loaded at compile
time. Both styles are discussed here.

4 Loading your programs: .pdl and .pm files

4.1 Autoloader (.pdl) files:
The PDL autoloader acts similarly to the IDL autoloader and is a part of the perldl
shell: if you are in perldl and run a subroutine (say foo) that isn’t defined, then the
autoloader searches your path for a file called foo.pdl and executes it in an attempt to
load the subroutine. Note that, as in IDL, it’s legal to have side-effects as the subroutine
compiles!

PDL’s autoloader differs from IDL’s in three ways:

• First, every file that you load gets watched and reloaded as necessary, so you
don’t have to say “.run foo” a lot if you’re doing development, as you do in
IDL. The files are checked just before the command prompt gets printed. Since
the checking involves reading directories only, it’s fast enough not to affect op-
erations in normal use – though you can switch off this behavior by setting a
variable.

• Second, the search path allows metacharacters that shorten the path string con-
siderably. If you want to include a directory and all its subdirectories in the
search path, you can say ”+dir” in the path.

• Third, PDL separates the language and shell functionalities (something IDL does
not do). The autoloader is part of the shell, and not normally part of the language
itself. You can use PDL from simple perl scripts just by saying

#!/usr/bin/perl
use PDL;

at the top of the shell script. Then you can run the script from the command
line (on UNIX-like systems) or by double-clicking it (on GUI systems). Such
scripts do not have access to the autoloader by default. You can make them use
the autoloader by saying

use PDL::AutoLoader;

near the top of the script. Such scripts have less control than many people would
like over which module is being run, but they have the advantage that they can
use the same ad-hoc autoload tree that you might put together for interactive
work on, say, a particular data analysis project. The choice is yours.

18 6 IMAGES AND COLLECTIONS OF IMAGES

4.2 Perl module (.pm) files
When your quick-and-dirty code stabilizes and you consider publishing it, you will
probably want to package it into a perl module. Perl modules must be explicitly loaded
with the perl use statement, but they make it easy to collect related routines into one
place, along with their documentation. They also afford a degree of version control
that is not possible with an autoloader design.

Object-oriented efforts are most naturally organized as modules; see the perltoot
man page for details..

There are standardized forms for documentaton and version tracking within mod-
ules, and provisions for avoiding namespace pollution: the perl name space is hierar-
chical, so your module can hide its routines within its own part of the namespace, and
not collide with other projects.

5 File I/O
I/O from PDL is extremely flexible. The basic I/O routines built into perl are designed
to make your life easy for ASCII I/O – but there are several specific routines that help
you read and write binary data, FITS files, and most standard image formats.

5.1 Basic perl I/O
In IDL, you use FORTRAN file numbers to describe files on disk. In perl, you use
filehandles – ASCII identifiers that are associated with the file. Filehandles have no
sigil, unlike variable names. They are case-sensitive. By convention, they are written
in all-caps, to distinguish them from reserved words and such. When you start your
perl program you have three filehandles open: STDOUT, STDERR, and STDIN. UNIX
users will recognize those as the names of the three standard UNIX streams.

The perl built-in file handling functions are described in detail in the perl documen-
tation. The basic function calls are open and close for file handling, print and
printf for unformatted and C-style formatted ASCII output, the “<FILE>” opera-
tor for unformatted ASCII input, write and read for fixed length (ala FORTRAN)
ASCII I/O, and syswrite and sysread for unformatted binary I/O.

6 Images and collections of images
Image I/O, including FITS files, is via rpic and wpic, generalized image read/write
routines that handle most standard formats including PNG, JPEG, GIF, PPM, FITS,
Encapsulated PostScript, and others. Some simple ways to read and write FITS files
are:

$a = rpic("filename.fits"); # Works for other file formats too
$a->wpic("another-filename.fits"); # method syntax
wpic($a,"another-filename.fits"); # function syntax

6.1 Raw binary data 19

You can read in a long list of FITS files with:

@files = <directory/*.fits>; # Example of UNIX-style globbing
@imgs = mrfits(@files); # @files is a list of file names.
$cube = rcube(\&rpic, @files);

The output of mrfits is a perl list, each element of which is the corresponding FITS
file loaded into a PDL variable. The output of rcube is a single data cube loaded with
all of the images stacked in the highest dimension, so it is more useful for a collcetion
of uniformly sized files.

Unlike IDL, PDL can keep a metadata header attached to each variable, so there
is no need to keep track of an additional header variable for each image you load. To ac-
cess fields in $a’s FITS header in the example above, use (e.g.) “$a->hdr->{TELESCOP}”.

6.1 Raw binary data

There are several ways to manipulate raw binary data with no in-file header at all.
One way is with the PDL::IO::FlexRaw module, which defines the commands
readflex and writeflex. see Chapter ?? for details.

6.1.1 Arbitrary collections of data

There are at least two simple ways to dump a collection of PDL variables to disk for
later retrieval. The method closest to IDL’s save-file format is with the PDL::IO::Storable
module, which lets you write and read collections of variables to disk in a fast, opaque,
binary format, using the functionsstore and retrieve. The PDL::IO::Dumper
module translates arbitrary perl data structures into perl source code, which is a con-
venient quasi-human-readable format that is completely portable, but much slower and
larger than the Storable format.

7 Other useful tools

7.1 PDL::Transform
PDL contains a module, “PDL::Transform”, that handles general coordinate transfor-
mations on data. FITS headers are used to separate the pixel and scientific coordinate
systems. PDL::Transform defines a new type of object, a Transform, that represents a
coordinate transformation; you can apply a Transform to a list of vectors (in which case
they are converted to the new system) or to an image (in which case it is resampled to
the new coordinate system).

PDL::Transform uses FITS headers to keep track of the scientific coordinate system
independently of the pixel coordinate system of image arrays, so you can mix and
match data from independent sources, provided that each data file has a WCS FITS
header (most solar observatories include that these days).

20 7 OTHER USEFUL TOOLS

7.2 Graphing/plotting
PDL has several graphical front-ends; take your pick. The currently most popular one
is PDL::Graphics::PGPLOT, which uses the venerable but stable PGPLOT routines;
the most actively supported one is PDL::Graphics::PLplot, which uses the newer
PLplot library (that runs faster and supports RGB color better). Three-dimensional
graphics are supported via the OpenGL library, using PDL::Graphics::TriD.

7.3 Solar tools
SSWPDL contains a few solar-physics-specific utilities that you might want. You can
browse the auto tree to find them, but these specific tools are particularly handy:

t_derotate_image and t_diff_rot are Transform constructors that are handy for
co-aligning images.

pb0r and sun_pos duplicate the corresponding functionality in the rest of SSW.
align_and_center provides sub-pixel co-alignment of image sequences.
zspike implements the ZSPIKE time-domain despiking algorithm (which works

not only for EUV and FUV solar images but also for more challenging data such as
SOHO/MDI magnetograms).

units converts between familiar SI , CGS, and other physical units.
amoeba implements a simple parameter fitter.
rk4 is a Runge-Kutta integrator.

