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Fig. 9. Measured far-field patterns of the circular QRFH in (a) φ = 0◦, (b)
φ = 45◦, and (c) φ = 90◦ planes from 2 to 12 GHz.

and inductance due to depth of contact with opposite ridge
begin to play a bigger role.

The normalized radiation patterns of the QRFH are plotted
in Fig. 9 from 2 to 12 GHz in approximately 1 GHz steps in
E-, D- and H-planes (see Fig. 11 for unnormalized gain vs
frequency). Excellent beamwidth stability is noted in both E-
and D-planes. H-plane beamwidth shows more variability—
i.e. the far-field patterns are not rotationally symmetric—
because of the different boundary conditions on the magnetic
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Fig. 10. (a) Simulated and (b) measured gain vs frequency at θ angles from
0 to 90 degrees in steps of 10 degrees. The curves are at φ = 45◦ and are
normalized to θ = 0◦.

fields in the horn. The radiation patterns of one polarization
are plotted for brevity; however, performance of the other
polarization is virtually identical. In addition to predicting
measured return loss performance quite well, CST MWS does
an excellent job estimating the far-zone radiation patterns of
the QRFH as shown in Fig. 10. This figure also indicates that
high-frequency ripple in measured patterns is an artifact of the
far-field range and not due to the horn.

Another parameter of interest to radio astronomy appli-
cations is the cross-polarization level of the telescope feed.
Fig. 11 presents both measured and simulated peak cross-
polarization levels of the QRFH in the φ = 45◦ plane with
black curves which show that average cross-polarization level
of the horn is only about -10 dB. Also shown in the same
figure are cross-polarization levels in the secondary patterns
computed using physical optics, revealing an average cross-
polarization level of -14 dB. The unequal E- and H-plane
beamwidth of the QRFH alone only produces secondary cross-
polarization of ≤ -50 dB.

The cross-polarization performance of the horn is very
sensitive to modal content in the horn and could be improved
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Telescope X−pol − using sim. QRFH patterns
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Fig. 11. The measured and simulated gain of the QRFH (top two curves)
and peak cross-polarization level of the QRFH (in the φ = 45◦ plane) and
the GGAO telescope when illuminated by the QRFH.

significantly (e.g. down to -15 dB level) once a thorough
understanding of the impact of ridge and sidewall geometry
on the mode conversion within the horn is achieved. For radio
astronomy applications sensitive to polarization, the cross-
polarization can be measured by observations of sources with
known polarization and then corrected in data processing. An
important criteria is then the stability of the cross polarization
which we believe will be very high due to the solid metal
construction of the QRFH feed.

The excellent agreement between the CST simulations
and measurements shown thus far instills confidence in our
modeling of the QRFH as well as the database of QRFH
performance as a function of horn parameters generated with
the aforementioned automated software setup. This agreement
also enables the use of the simulated far-zone patterns in
estimating the aperture mode content of the QRFH.

B. Aperture Mode Content

The technique outlined in Section II-A is now used to
estimate the mode content at the aperture of the quad-ridge
horn. Before proceeding, we note that this is inherently an
approximate calculation because the radiation pattern synthesis
approach in [24] assumes that the radiating aperture is large
compared to the guide wavelength. This is not true in the
lower part of the QRFH frequency range. This has two effects:
1) the uniform phase front at the aperture is not planar; 2)
the reflections at the aperture, which are ignored, could be
important.

Fig. 12 presents the aperture mode analysis results along
with aperture efficiency and its sub-efficiencies. Parts (a) and
(b) of Fig. 12 plot the fraction of total radiated power in TEmn

and TMmn modes, respectively. For this analysis, first 150 TE
and 150 TM modes are considered (specifically, those that are
above cutoff at the aperture at a given frequency). Only the first
six modes are plotted in Fig. 12 for clarity, which is justified
because the remaining modes carry little to no power over
the operating frequency range. These plots show that TE11 is
indeed the dominant mode at all frequencies and its behavior
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Fig. 12. Percentage of total power in (a) TEmn coefficients and (b)
TMmn coefficients; (c) Aperture efficiency and various sub-efficiencies
which are calculated using closed-form equations from [29]. Data is based
on simulated performance. TE11, TE12, TM11, TM12 coefficients from
Fig. 4 are reproduced with diamond markers for ease of comparison.

is similar to the required TE11 mode amplitude, albeit with
a faster decrease in relative power content with increasing
frequency. The TE12 mode carries roughly the same fraction
of the total power regardless of frequency. It is below cutoff
at the feed point of the horn all the way up to approximately 8
GHz which implies that it is generated by curvature of ridges
and sidewall and is not excited significantly at the feed point.
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This, combined with the absence of even-order azimuthal
modes, is an important result that suggests that ridges do
not significantly alter the mode conversion expected from a
smooth-walled horn with the identical profile. In particular,
it was shown in [30] that horn diameter variations can only
cause coupling between modes of same azimuthal order.

The efficiencies in Fig. 12(c) are calculated using the
simulated far-field patterns by closed-form equations from
[29], which are intended for prime focus illumination of a
reflector; moreover, they do not take into account shaping of
the reflector surfaces. Nonetheless, they are presented here for
two purposes: 1) they provide a mean to assess contributions of
various sub-efficiencies to the overall horn performance; and
2) they capture most of the important features in the far-field
radiation patterns.

The illumination efficiency shows a dip around 9.5 GHz
which correlates very well with a similar dip observed in Fig.
10. It also corresponds to a small excitation of higher-order
TM modes in Fig. 12(b). These modes have the effect of
narrowing the main beam in E- and D-planes which manifests
itself as reduced illumination efficiency but increased BOR1
efficiency. Due again to this higher-order mode excitation,
cross-polarization level in the φ = 45 degree plane increases
which can be deduced from polarization sidelobe efficiency
curve. A similar dip just below 8 GHz in the aperture efficiency
is due mainly to beam narrowing in the H-plane pattern
resulting in both reduced illumination and BOR1 efficiencies.
The next section presents a more realistic aperture efficiency
prediction calculated using physical optics.

C. Predicted System Performance
The shaped dual-reflector radio telescope, for which the

QRFH presented herein is designed, was built with optics
designed at the Jet Propulsion Laboratory [31] and mechani-
cal design and construction by Patriot/Cobham. The primary
reflector has a diameter of 12 meters and the full subtended
angle to the secondary reflector is 100 degrees. It is located
at the Goddard Geophysical and Astronomical Observatory
(GGAO), where it serves as a radio telescope for a geodetic
VLBI application requiring 50% aperture efficiency and 50
Kelvin system noise temperature.

A custom physical optics (PO) program, which takes into
account shaping of both reflectors, was used to compute both
aperture efficiency and antenna noise temperature based upon
the measured QRFH patterns. The results for both linear
polarizations are shown in Fig. 13.

The predicted aperture efficiency is ≥ 65% up to 10 GHz
and stays above 50% up to 12 GHz. Aperture efficiency
averaged over the entire band is 69%. An important consid-
eration for radio telescopes is phase center stability over the
frequency band of interest. The phase center of the QRFH
moves approximately 5 cm from 2 to 12 GHz, obtained from
measured far-field patterns. Because the PO calculations are
carried out for a fixed feed position, the effect of this phase
center variation is taken into account. The QRFH is focused
at the high end of its frequency band which minimizes loss
due to phase center variation as the axial de-focusing at the
low end of the band is small compared to a wavelength.
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Fig. 13. The predicted aperture efficiency and antenna noise temperature of
the circular QRFH designed for the GGAO 12m telescope. Both are calculated
using physical optics at an elevation angle of 48 degrees. Losses due to strut
and subreflector blockage and r.m.s. surface error are not included in the PO
calculations. The sky noise temperature is calculated per the method outlined
in [32], and is 5.5K at 4 GHz and 6.5K at 10 GHz.

The predicted antenna noise temperature is less than 20K
from 3 to 12 GHz and less than 30 K below 3 GHz.
Estimating the receiver noise temperature to be around 23
K (calibration coupler noise contribution 8 K + LNA noise
temperature 10 K + coaxial cable loss 5 K), the QRFH-based
receiver is expected to meet the 50K Tsys and 50% Aeff

specifications over the entire frequency band. The simulated
loss in the horn is less than 0.1 dB corresponding to < 0.8 K
noise contribution and is thus negligible. This is because of
the solid metal construction and existence of wide surfaces
for current flow. Our estimate of the LNA contribution to
receiver noise temperature is conservative. Current state-of-
the-art cryogenic LNAs developed in our group and in use at
GGAO achieve about 6K over much of this band [33]. A new
dewar, specifically designed for the QRFH-based receiver, is
presently under construction.

IV. CONCLUSION

A circular quadruple-ridged flared horn is presented that
achieves 6:1 frequency bandwidth while maintaining almost
constant gain. The measured radiation patterns of the QRFH
display very stable beamwidth vs. frequency in E- and D-
planes while the H-plane patterns show more variation. The
horn exhibits excellent match to 50 Ω from 2 to 19 GHz which
is well beyond the target frequency range. Both radiation
patterns and scattering parameters are in excellent agreement
with simulations. Predicted system performance of the QRFH,
based on measured patterns and using physical optics, show
an average aperture efficiency ≥ 65% and antenna noise
temperature less than 30 K over the entire band with an
average of 13 K.

The average cross-polarization performance of -10 dB needs
improvement but is typical for wideband feeds with greater
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than 2:1 frequency ratio currently considered for radio as-
tronomy applications. Modal analysis of the circular QRFH
aperture demonstrates that the horn comes fairly close to
generating required modes at the aperture to achieve constant
beamwidth; however, improvement is necessary to ensure
more stable beamwidth vs. frequency, especially in the H-
plane.

Further improvements to the cross-pol levels as well as
unequal principal plane beamwidths necessitate a better under-
standing of the mode conversion throughout the horn. Under-
standing progression of all pertinent modes in the horn with
the goal of establishing relationships between ridge/sidewall
profiles and mode coupling coefficients and their impact on the
quad-ridge horn performance is the topic of ongoing research
in our group.
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