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Fig. 16. Manufactured dual-notch/power-divider prototype. (a) Layout.
Illustrated dimensions (in mm): w1 = 3.3, w2 = 3.3, w3 = 1.8, l1 = 20.7,
l2 = 10, l3 = 17, l4 = 15, l5 = 10, l6 = 7, l7 = 17, l8 = 7.57, l9 = 33.5,
l10 = 35, l11 = 28, l12 = 10, and l13 = 7. (b) Photograph.

with the following parameters was used for manufacturing:
relative dielectric permittivity εr = 3.38, dielectric thickness
H = 1.52 mm, metal thickness t = 17.8 μm, and dielectric
loss tangent tan δD = 0.0027. The reconfigurable resonators
of both the wideband BPF and the incorporated dual-notch
filtering sections were implemented as uniform-impedance
transmission-line segments that are loaded with ground-ended
mechanically adjustable capacitors of 1–5-pF variation range
(the same model as in the previous example)—C f controls the
center frequency of the overall transmission band, whereas Cr1
and Cr2 tune the center frequencies of the embedded lower and
upper notched bands, respectively. The couplings between the
resonating nodes of the dual-notch filtering sections and their
adjacent NRNs were realized through 0.5-pF (±0.25-pF toler-
ance) static capacitors (Cc) from Samsung Microelectronics—
manufacturer part number: CL31C0R5CBCNNNC (i.e., no
bandwidth control is introduced in this particular circuit).
The impedance inverters that connect in series the tunable
resonators of the BPF were designed as quarter-wavelength
transmission-line sections.

The simulated and measured power transmission and reflec-
tion responses of the built prototype for one specific tuned state
are shown in Fig. 14. Again, the agreement obtained between
simulated and experimental results is reasonably close. The
measured minimum power insertion-loss and input-matching
levels in the whole passband are 0.85 and 13.9 dB, respec-
tively. It shows a center frequency equal to 0.97 GHz and a
relative bandwidth of 30.2%. The measured power-rejection
depths of the in-band notches located at 0.93 and 1.05 GHz

Fig. 17. Simulated and measured S-parameters—in amplitude—of the
manufactured dual-notch/power-divider prototype for one example state (sim-
ulation values for the capacitors as designated in Fig. 16: Cr1 = 4.2 pF,
Cr2 = 0.6 pF, Cc = 0.65 pF, and estimated quality factor Q = 150 at 1 GHz
for all the capacitors).

are 38.5 and 41.5 dB, respectively. The frequency-tunability
characteristics of the fabricated circuit are shown in Fig. 15.
First, center-frequency control of the overall transmission band
with two embedded notches is proved in Fig. 15(a) and (b)—
the in-band notches remain static in Fig. 15(a), whereas they
are also tuned in Fig. 15(b). The capability to tune the center
frequency of the lower and upper in-band notches for one static
passband is demonstrated in Fig. 15(c) and (d), respectively.
Finally, the center-frequency reconfiguration of a composite
third-order wider stopband shaped from the merging of the
lower and upper third-order eliminated bands is exemplified
in Fig. 15(e). Summarizing the aforementioned RF-measured
performance metrics, the developed wideband BPF proto-
type with embedded notches allows a simultaneous frequency
reconfiguration of its overall transmission band and in-band
notches, as well as the intrinsic control, i.e., without RF
switches, of the number of active rejected bands through its
merging. Such spectral-adaptivity capabilities are reported in
this paper for the first time for this type of dual-function RF
filtering components. Furthermore, the rejection depths of the
embedded notches and their tuning range are much larger than
those demonstrated by related prior-art devices as the ones
in [17], [18], [20], and [21].

C. Prototype 3

As the third experimental demonstrator, a 3-dB Wilkinson-
type single-stage/two-way power divider with two embedded
frequency-tunable second-order stopbands has been manufac-
tured and characterized. As in the previous circuit examples,
the rejected bands can be independently controlled and spec-
trally merged within the 0.8–1.1-GHz frequency interval.

The layout and a photograph of the constructed prototype
are shown in Fig. 16. For circuit manufacturing, the same
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Fig. 18. Measured power transmission (|S21|) responses of the manufac-
tured dual-notch/power-divider prototype for different reconfiguration states.
(a) Center-frequency control of the lower stopband. (b) Center-frequency
control of the upper stopband. (c) Center-frequency control of a wider single
stopband obtained from the spectral merging of the two eliminated bands into
one.

substrate and capacitors as in the filter implementation in
Section III-B were used. Furthermore, similar circuit solutions
were adopted for the realization of the tunable resonators
and their couplings with their contiguous NRNs—Cr1 and
Cr2 control the center frequencies of the inserted lower and
upper rejected bands, respectively. Its simulated and measured
S-parameters—in amplitude—for one particular reconfigured
state are compared in Fig. 17. As can be seen, measured
maximum power-rejection levels of 25.5 and 29.5 dB for the
notched bands centered at 0.85 and 1.1 GHz are, respec-
tively, obtained. The measured minimum interstopband power-
insertion-loss level is 3.35 dB (i.e., 0.35 dB of excess loss with
regard to the 3-dB power-division factor that includes the SMA
connector loss), whereas the power-isolation levels between
the output terminals and the power-matching levels at all the
ports are higher than 10 dB for the plotted frequency interval.
The spectral-adaptivity capabilities of the developed filtering
power divider are proved in Fig. 18. Independent center-
frequency reconfiguration of the lower and upper suppressed
bands is, respectively, verified in Fig. 18(a) and (b). Moreover,
center-frequency tuning of a single and wider second-order
rejected band that is obtained from the merging of the two
adaptive second-order stopbands is validated in Fig. 18(c).

In all these responses, comparable power-matching and power-
isolation performances as in the state shown in Fig. 17 are
achieved, as well as nearly identical transfer functions for both
power-divider branches.

IV. CONCLUSION

A new type of tune-all planar multiband BSFs that feature
larger number of reconfigurable transfer-function properties
than related prior-art devices have been presented. The pro-
posed RF filtering approach is based on the in-series cascade
of spectrally adaptive multiband bandstop filtering cells that
comprise variable resonators and adjustable impedance invert-
ers. In this manner, an independent control of the generated
stopbands in terms of center frequency and bandwidth is
obtained in the overall filter architecture. Moreover, these
rejected bands can be spectrally combined into wider stop-
bands of the same order to dynamically select the amount
of active eliminated bands regardless of the number of the
resonators that are used in its building multiband bandstop
filtering stage. The operational principles of the engineered
multiband BSF, which is practically scalable to any number of
arbitrary-order stopbands, have been theoretically expounded
by means of a coupling-matrix formalism. In addition, its coin-
tegration with other RF analog-processing functionalities, such
as the realization of frequency-reconfigurable wideband BPFs
and Wilkinson-type power dividers with embedded multiband
adaptive notches, has been investigated for the first time. Note
that all these multifunctional filtering components exhibit less
insertion loss and circuit size, i.e., fewer impedance inverters,
when compared with their classic counterparts based on series
cascades of separate monofunction RF blocks. As exper-
imental proof-of-concept demonstrators of the devised RF
filtering devices, three UHF-band mechanically reconfigurable
prototypes have been manufactured in microstrip technology
and measured.
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