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Abstract

Antenna design traditionally relies on physical understanding of electromagnetic radiation, intuition, and
experience, as well as trial-and-error experimentations. With the advent of computers and increasingly
sophisticated numerical methods, however, computer-aided design tools play a central role in today’s
antenna design and optimization process. This chapter presents a summary of commonly used commer-
cial antenna design simulation tools and their underlying computational electromagnetics methods.
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Introduction

Antenna design is an art that dates back to the early work of Hertz in 1886–1889 when he first
experimentally verified the existence of electromagnetic waves, using his electric dipole antenna trans-
mitter and ring receiver. Since then, traditional antenna design relies heavily on physical intuition and
trial-and-error experimentation.

During the last few decades, computer technologies and computational science and engineering have
revolutionized the design and optimization of antennas. Today, one can easily use commercially available
antenna design tools to study how the antenna structure interacts with electromagnetic waves so that the
structure and materials can be optimized to achieve the design goals.

Antenna design and optimization rely on solutions of Maxwell’s equations. Unfortunately, only
problems with canonical geometries (such as spheres, infinitely long circular cylinders, and planar layers)
admit analytical solutions. Almost all antenna design problems require numerical solutions of Maxwell’s
equations, either exactly with full-wave solution methods or approximate methods such as high-
frequency asymptotic techniques.

Computational electromagnetics is an important area that develops effective numerical methods for
Maxwell’s equations for applications in antenna design and optimization, in addition to many other
application areas.

The goal of this chapter is to give an outline of the numerical methods commonly used in antenna
design tools. First, several commercial antenna design tools are listed, followed by the basic electromag-
netic theory. Then three numerical techniques widely used in these tools, i.e., the method of moments for
surface integral equation solvers, finite element method, and finite difference time domain method, are
discussed in more detail.
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Commonly Used Commercial Antenna Tools

The commonly used commercial antenna design tools are listed in Table 1. Note that this may be a
non-exhaustive list as there are certainly other software packages capable of doing antenna design
simulations. Also note that open-source but noncommercial tools, such as the very well-known antenna
design tool NEC (www.nec2.org) (NEC 2015) based on the method of moments (MOM), have not been
included in the table.

Although most software packages use multiple numerical techniques, according to their primary
methods involved, methods used by these commercial tools can be categorized into four classes:
(a) frequency domain finite element method (FEM), (b) frequency domain method of moments,
(c) finite difference time domain (FDTD) method, and (d) multiscale discontinuous Galerkin time domain
(DGTD) method. Complementary methods including high-frequency asymptotic techniques have also
been used to simulate electrically very large structures where the full-wave solutions are difficult to apply
because of the sheer size of the problem.

General Flow of an Antenna Simulation Tool
A typical antenna simulation tool consists of following parts:

• Graphic User Interface (GUI): GUI is the central part of the software that the user interacts with. In
general, the GUI provides the following functions:
– Problem definition: The GUI allows the user to enter easily geometries, materials, sources,

observers, boundary conditions, required results, and other simulation parameters.
– Problem modification: The GUI also enables the user to modify the problem settings easily. This

may includemodifications to any parameters, including editing the geometries in the solid modeling.
– Preprocessing: The GUI in general will enable the necessary preprocessing of the problem to

validate the model and to prepare for the actual computation.
– Results and post-processing: Finally, GUI allows the user to view results and to perform various

post-processing.
– Design optimization and parameter sweeping: Through GUI, the user can further perform design

optimization of the antenna by optimizing certain parameters either through an optimization
algorithm or by sweeping certain antenna parameters to search for the best configuration.

• Preprocessing: Typical preprocessing includes validation of the configuration, mesh generation, and
other pre-computations including the source excitations.

• Computational Engine: This is the core of the numerical solver that gives the solutions to Maxwell’s
equations for the problem prescribed by the GUI. These methods will be further discussed in sections

Table 1 Commonly used commercial antenna design tools

Abbreviation Primary method Additional methods Company

COMSOL
HFSS

FEM
FEM

FETD, DDM COMSOL, Inc.
ANSYS

EMCoS
FEKO
newFASANT

MOM
MOM/MLFMM
MOM

FEM, FDTD, PO, GO, UTD
High-frequency methods

EMCoS
Altair
FASANT

Microwave Studio
SEMCAD
XFDTD

FIT
FDTD
FDTD

FEM, MOM, MLFMM
Sub-gridding
GTD, UTD

CST
SPEAG
Remcom

Wavenology DGTD/FDTD SETD, FETD, SPICE WCT
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“Method of Moments for Surface Integral Equations,” “Finite Element Method,” and “Finite Differ-
ence Time Domain Method.”

• Post-Processing: The computational engine provides the basic near-field solutions, which can then be
processed to arrive at the antenna performance characteristics including radiation pattern, gain, and
efficiency. Near-to-far-field transformation is necessary to obtain the far fields from the computed near
fields.

Numerical Methods for Antenna Simulation
Commonly used numerical methods can be divided into the frequency domain solvers and time domain
solvers:

• Frequency domain methods: Antenna designers usually need to know the scattering parameters and
other antenna performance characteristics over a frequency band. Thus, the antenna simulation is very
often directly obtained in the frequency domain by assuming a time-harmonic excitation with a given
frequency. By changing the input frequency, one can obtain the results over a frequency band. If the
transient results are needed (especially for ultra-wideband antennas whose waveforms are often sought
for), one can perform the inverse Fourier transform on the frequency domain results to arrive at time
domain results. The frequency domain methods can be further divided into the following:
– Partial differential equation solvers: They normally solve the 2nd-order vector Helmholtz equation

that is derived from 1st-order Maxwell’s equations (usually just Faraday’s law and Ampere’s law).
Methods include finite element method (FEM), spectral element method, finite difference frequency
domain method, and pseudospectral frequency domain method. As the FEM is the mostly com-
monly used frequency domain technique in commercial tools, it will be discussed in more detail in
section “Finite Element Method.”

– Integral equation solvers: They solve the surface or volume integral equations derived from
Maxwell’s equations and Green’s function for a background medium. Surface integral equation
solvers based on the MOM are the mostly commonly used integral equation technique, so it will be
discussed in more detail in section “Method of Moments for Surface Integral Equations.”

• Time domain methods: If antenna characteristics are desired over a wide frequency range, it may be
more advantageous to solve Maxwell’s equations directly in time domain to arrive at the wideband
waveforms. The frequency domain results such as scattering parameters often required by antenna
designers can be obtained by Fourier transform of the transient results. Therefore, time domain
methods often are preferred for wideband application as one can obtain all frequency domain results
with a single simulation. On the other hand, if a narrow band result is needed, especially when the
system has high resonances within this band, the frequency domain solvers are preferred. The time
domain methods can be further divided into the following:
– Partial differential equation solvers: Time domain PDE solvers work with either the 2nd-order vector

wave equation or 1st-order Maxwell’s equations. Methods include finite difference time domain
(FDTD) method, finite element time method (FETD), spectral element time domain (SETD)
method, pseudospectral time domain (PSTD) method, finite integration technique (FIT), and
multi-resolution time domain (MRTD) method. As the FDTD is the mostly commonly used time
domain technique in commercial tools (FIT may also be considered as a special FDTD method), it
will be discussed in more detail in section “Finite Difference Time Domain Method.”

– Integral equation solvers: Time domain integral equation methods solve the surface or volume
integral equations derived from Maxwell’s equations and Green’s function for the background
medium in time domain. Unfortunately, despite vigorous research, time domain integral equation
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solvers are relatively expensive in terms of computer memory and computation time and apparently
have still yet to be incorporated into a commercial simulator. Thus, time domain integral equation
methods will not be discussed in detail in this chapter.

Each method has its distinct advantages and disadvantages and no one single solver is perfect for all
problems, so usually multiple numerical methods may be utilized in a commercial simulation tool to fully
exploit the advantages of different methods.

Basics of Electromagnetics Theory

This section summarizes the fundamental concepts and equations in electromagnetics, including Max-
well’s equations and boundary conditions. The materials below in this section are the condensed theory
explained by Liu (2014).

Transient Electromagnetic Fields
Maxwell’s equations describe the relation between electromagnetic sources and the fields. In electromag-
netic simulations, one is interested in finding the following electric field intensity E and magnetic field
intensity H from governing Maxwell’s equations:

∇� E ¼ �Mi �Mc � @B
@t

(1)

∇�H ¼ �Ji � Jc � @D
@t

(2)

∇ � D ¼ rei þ rec (3)

∇ � B ¼ rmi þ rmc (4)

where the imposed electromagnetic sources include electric current density Ji and magnetic current
density Mi.

In addition, the continuity equations governing the conservation law of charges are

∇ � Ji, c ¼ � @rei, c
@t

(5)

∇ �Mi, c ¼ � @rmi, c
@t

(6)

respectively, for the impressed sources and the conduction sources. Note that the total free electric and
magnetic charge densities are

re ¼ rei þ rec, rm ¼ rmi þ rmc (7)

where rei (rmi) and rec (rmc) are the electric (magnetic) charge densities due to the imposed and
conduction electric (magnetic) current, respectively. Note that in this chapter, the magnetic sources are
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included even though so far no isolated magnetic charges have been found. The reason for the introduc-
tion of these sources is for symmetry between electric and magnetic quantities and for the future
possibility of finding magnetic monopoles. Moreover, it is often convenient to use equivalent magnetic
current sources in solving antenna problem, for example, aperture antennas; under such circumstances,
magnetic sources are typically more convenient in computation.

Additional equations are provided by constitutive relations. For anisotropic media, the relations
between flux densities and field intensities are

D ¼ ϵE ¼ ϵ0ϵr E; (8)

B ¼ mH ¼ m0mrH: (9)

where ϵ0 and m0 are the permittivity and permeability of the vacuum, while ϵ and ϵr are the permittivity and
relative permittivity tensors of the medium, and m and mr are the permeability and relative permeability
tensor of the medium, respectively. In general for a linear medium, the 3 � 3 permittivity and perme-
ability tensors ϵ and m are independent of the field strength. The conduction current densities are related to
the field intensities by Ohm’s law:

Jc ¼ seE; (10)

Mc ¼ smH; (11)

where se (siemens/meter) and sm (ohms/m) are called the electric and magnetic conductivities, respec-
tively. In general, electromagnetic media can be inhomogeneous, that is, all parameters ϵ,m,se, andsmmay
be functions of position. Furthermore, some media can be dispersive, i.e., the parameters are functions of
frequency.

Given the impressed electric and magnetic sources Ji rei,Mi, rmi, the unknown quantities to be solved
are E, H, D, B, Jc,Mc, rec, and rmc. Equations 8, 9, 10, and 11 together with Eqs. 1, 2, 5, and 6 provide
20 scalar equations, from which all 20 unknowns can be solved. With the above constitutive relations,
Maxwell’s equation can now be written as

∇� E ¼ �Mi � smH� m
@H
@t

(12)

∇�H ¼ Ji þ seEþ ϵ
@E
@t

(13)

∇ � ϵE ¼ rei þ rec (14)

∇ � mH ¼ rmi þ rmc (15)

In most cases only the isotropic media will be treated in this chapter, where ϵ ¼ ϵI , m ¼ mI , se ¼ seI ,

sm ¼ smI where ϵ and m are the scalar permittivity and permeability and I is the identity tensor.

Time-Harmonic Electromagnetic Fields
Time-harmonic EM fields are those with a sinusoidal variation in time, for example,
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E r, tð Þ ¼ x̂Ex rð Þcos ot þ fx rð Þ½ � þ ŷEy rð Þcos ot þ fy rð Þ
h i

þ ẑEz rð Þcos ot þ fz rð Þ½ � (16)

where the constant o is the angular frequency. To simplify the treatment of time-harmonic fields, one can
introduce the phasor notation Ẽ(r) of the corresponding instantaneous field E(r, t). The relation between
the instantaneous and phasor expressions is

E r, tð Þ ¼ ℜe ~E rð Þejot� �
(17)

In general, the phasor expression

~E rð Þ ¼ x̂ ~Ex rð Þexp jfx rð Þ½ � þ ŷ ~Ey rð Þexp jfy rð Þ
h i

þ ẑ ~Ez rð Þexp jfz rð Þ½ �

is complex, even though the instantaneous expression E(r, t) is always real.
With this relation between the instantaneous and phasor expressions of the field, the time derivative @

@t
on the instantaneous field corresponds to jo times the phasor expression of the field. Therefore, one can
derive Maxwell’s equations for the phasor form of electromagnetic fields as

∇� ~E ¼ � ~Mi � sm ~H � jom ~H (18)

∇� ~H ¼ ~Ji þ se ~E þ joϵ ~E (19)

∇ � ϵ ~E ¼ erei þ erec (20)

∇ � m ~H ¼ ermi þ ermc (21)

The continuity equations are

∇ � se ~E ¼ �joerec; (22)

∇ � sm ~H ¼ �joermc: (23)

By introducing complex permittivity and permittivity,

eϵ ¼ ϵ� jse
o

(24)

em ¼ m� jsm
o

(25)

Equations 18, 19, 20, 21, 22, and 23 can be rewritten compactly as

∇� ~E ¼ �joem ~H � ~Mi (26)
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∇� ~H ¼ joeϵ ~E þ ~Ji (27)

∇ �eϵ ~E ¼ erei (28)

∇ � em ~H ¼ ermi (29)

For simplicity, in the following discussions, the tilde on phasor quantities and the complex permittivity
and permeability will be dropped, keeping in mind that all these quantities are in general complex.

Electric and Magnetic Vector Potentials
In the linear regime, material properties of an isotropic medium mr, ϵr, se, and sm are independent of the
field strength, and then Maxwell’s equations constitute a linear system. Then the principle of linear
superposition applies, i.e., electromagnetic fields can be written as the superposition of the fields (EA,HA)
generated by Ji and (EF, HF) generated by Mi:

E ¼ EA þ EF , H ¼ HA þHF (30)

Because of the principle of superposition, one can solve (EA, HA) and (EF, HF) separately and then sum
them up to obtain the total fields.

In particular, (EA, HA) due to Ji can be determined from the vector potential A. In a homogeneous
medium, A is governed by the vector Helmholtz equation

∇2Aþ o2mϵA ¼ �mJi (31)

subject to a gauge condition because the divergence ofA needs to specified to be unique. One may choose
the so-called Lorenz condition (gauge)

∇ � A ¼ jomϵfe ¼ 0 (32)

as the condition for its divergence, where fe is the electric scalar potential. Alternatively, Coulomb’s
gauge ∇ � A ¼ 0ð Þ can be chosen for the divergence.

Similarly, (EF, HF) generated by Mi can be obtained by the electric vector potential F. This vector
potential satisfies the vector Helmholtz equation

∇2Fþ k2F ¼ �ϵMi (33)

subject to the Lorenz condition

∇ � Fþ jomϵfm ¼ 0 (34)

where fm is the magnetic scalar potential.
Because of the principle of superposition, the total fields due to both electric and magnetic sources are
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E ¼ EA þ EF ¼ �jo Aþ 1

k2
∇ ∇ � Að Þ

� �
� 1

ϵ
∇� F

H ¼ HA þHF ¼ �jo Fþ 1

k2
∇ ∇ � Fð Þ

� �
þ 1

m
∇� A

(35)

where k2 = o2mϵ.
By the principle of superposition, if the electric current density is Ji(r) in a homogeneous medium, the

magnetic vector potential is

A rð Þ ¼ m
ð
V

J r0ð Þg r, r0ð Þdr0 ¼ mJ
N

g (36)

where

g r, r0ð Þ ¼ e�jk r- r0j j

4p r- r0j j (37)

is called scalar Green’s function for the homogeneous medium and
N

denotes the three-dimensional
spatial convolution. Similarly, the electric vector potential due to an arbitrary volume magnetic current
source M(r) is given by

F rð Þ ¼ ϵ
ð
V

M r0ð Þg r, r0ð Þdr0 ¼ ϵM
N

g (38)

which is the solution to Eq. 33.

Lumped Ports and Wave Ports
In antenna simulation, one needs to apply the signal to the antenna, usually through either a lumped port
(also known as a discrete port) or a wave port.

A lumped port consists of a voltage (or current) source and an internal impedance and is connected to
the computational mesh (or grid) as a lumped element. Usually the internal impedance is chosen as the
standard characteristic impedance of the transmission line (such as a coaxial cable) connected to the
antenna, for example, 50O. Through the field-circuit coupling, one can solve for the current (or voltage) at
the lumped port as well as the electromagnetic field excited in the whole computation domain. Then the
input impedance and scattering parameters can be calculated.

Awave port is usually a more realistic representation of the antenna source when it is connected to a
transmission line or a waveguide. Its input signal is represented as one (usually the fundamental)
waveguide mode of the transmission line or waveguide. The waveguide mode pattern and its
corresponding propagation constant as a function of frequency are obtained by solving an eigenvalue
problem of the corresponding infinitely long waveguide, over the desired frequency band. When one of
these incident waveguide modes (usually the fundamental mode) encounters the antenna structure, it will
be partially scattered back to the waveguide and partially transmitted out through the antenna. The
normalized scattered field versus the incident field gives the scattering parameter S11.
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Near-Field and Far-Field Computation and Radiation Parameters
The lumped port or wave port inputs signal with excite electromagnetic waves in the antenna structure and
gives rise to radiation of electromagnetic fields. The fields on the antenna outer surface or on a virtual box
enclosing the antenna are known as the near fields. They can be obtained by solving Maxwell’s equations
discussed in sections.

Once the near fields are obtained, the electromagnetic fields at any location outside the antenna can be
calculated by using background Green’s functions. In particular, antenna engineers need to know the
fields in the far zone to obtain the radiation pattern, gain, and antenna efficiency.

In order to obtain the near fields, Maxwell’s equations are solved by various numerical methods in
commercial antenna design tools. Described below are three commonly used methods, namely, method of
moments (MOM), finite element method (FEM), and finite difference time domain (FDTD) method, as
described in more detail by Liu (2015).

Method of Moments for Surface Integral Equations

Surface Equivalence Principle
The surface equivalence theorem is based on the uniqueness theorem: The field in a lossy region V is
uniquely determined by the sources inside V plus the tangential electric field components specified over
the surface S enclosing V (or the tangential magnetic field components or a combination of tangential
E and H).

In Fig. 1, (a) is equivalent to (b) outside volume V if the surface sources are chosen as

Js ¼ n̂� H0
1 �H0

2

� �
, Ms ¼ �n̂� E0

1 � E0
2

� �
(39)

Note that inside and outside V, both the medium properties (m10 , ϵ10), (m20 , ϵ20) and the fields E0
1 �H0

1

� �
,

E0
2 �H0

2

� �
can be chosen arbitrarily as long as (a) they satisfy Maxwell’s equations in the respective new

media by the new sources J01 �M0
1

� �
and J02 �M0

2

� �
and (b) they satisfy the boundary conditions on the

surface S. In practice, obviously, one should make choices such that some fields are relevant to that in the
original problem (otherwise, the solution to the equivalent problem will be useless).

By this surface equivalence principle, if the interested fields are E0
1 �H0

1

� �
outside V, the original

problem can be solved if one can solve the equivalent problem (b). Here are several possible choices of the
medium and fields inside V that can simplify the solution of (b).

If one chooses m01 ¼ m02 ¼ m1, ϵ
0
1 ¼ ϵ02 ¼ ϵ1, E0

2 ¼ 0,H0
2 ¼ 0, J01 ¼ J1, J02 ¼ 0,M0

1 ¼ M1, andM0
2 ¼ 0,

then the equivalent currents become

Js ¼ n̂�H1, Ms ¼ �n̂� E1 (40)

μ’2 ε’2

μ’1 ε’1

E’1H’1E1 H1

M2
J2

μ1 ε1

M1J1
J’1 M’1

M’2J2’

S

V

H’2E’2

μ2 ε2

S

V

E2

Js

Ms

H2

a b

Fig. 1 Surface equivalence theorem. (a) The original problem. (b) The equivalent problem with surface sources
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which radiate in the homogeneous medium (m1, ϵ1). Therefore, the vector potentials due to these sources
can be found through Green’s function:

Asct rð Þ ¼ m1

ð
S

Js r
0ð Þg1 k1Rð Þds0 (41)

Fsct rð Þ ¼ ϵ1

ð
S

Ms r
0ð Þg1 k1Rð Þds0 (42)

where R = |r – r0| and g1 k1Rð Þ ¼ e�jk1R

4pR is Green’s function in medium 1. However, again the sources in
(Eq. 40) are unknown to be solved by integral equations or by some approximations. Here these surface
currents will be solved using the surface integral equations described below.

Surface Integral Equations
To find the equivalent surface currents, one needs to form surface integral equations. This can be done
with the above surface equivalence principle applied to the exterior problem and the interior problem,
as detailed below.

The Exterior Problem: Using the above equivalence principle to the exterior problem, one has (Js1,
Ms1) on the surface S radiating in a homogeneous medium 1 to produce the scattered fields outside the
object, where

Js1 ¼ n̂�H1 ¼ n̂�Hinc
1 þ n̂�Hsct

1 (43)

Ms1 ¼ �n̂� E1 ¼ �n̂� Einc
1 � n̂� Esct

1 (44)

where E1
s and H1

s represent the scattered electric and magnetic fields in the homogeneous medium 1.
The Interior Problem: Similarly, using the above surface equivalence principle to the interior

problem, one has (Js2, Ms2) on the surface S radiating in a homogeneous medium 2 to produce the
scattered fields inside the object, where

�Js2 ¼ n̂�H2 ¼ n̂� Hinc
2 þHsct

2

� �
(45)

�Ms2 ¼ �n̂� E2 ¼ �n̂� Einc
2 þ Esct

2

� �
(46)

where E2
sct and H2

sct represent the scattered electric and magnetic fields in the homogeneous medium 2.
If the object is dielectric, the tangential components of the electric and magnetic fields must be

continuous across the interface S, or

Js1 ¼ �Js2�Js, Ms1 ¼ �Ms2�Ms (47)

Hence, using the formulas for the scattered fields, one arrives at the surface EFIE

n̂� Einc
1 ¼ �Ms � n̂� �jom1 Js

N
g1 þ ∇

k21
∇s � Js

N
g1ð Þ

h i
� ∇� Ms

N
g1½ �

n o
Sþ

n̂� Einc
2 ¼ �Ms � n̂� �jom2 Js

N
g2 þ ∇

k22
∇s � Js

N
g2ð Þ

h i
� ∇� Ms

N
g2½ �

h o
S�

n
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and the surface MFIE

n̂�Hinc
1 ¼ Js � n̂� �joϵ1 Ms � g1 þ ∇

k21
∇s �Ms � g1ð Þ

h i
þ ∇� Js � g1½ �

h o
Sþ

�

�n̂�Hinc
2 ¼ �Js � n̂� �joϵ2 Ms � g2 þ ∇

k22
∇s �Ms � g2ð Þ

h i
� ∇� Js � g2½ �

h o
S�

n

Note that E2
inc and H2

inc are the incident fields from medium 2 when there is a source inside. Therefore,
unlike the incident fields in medium 1, this can be only due to a finite source but cannot be a plane wave.

The above equations only consider the observation point at S�, i.e., infinitely close to the object surface.
If the observation point is placed exactly on the surface, however, the terms involving the gradient of
Green’s function will have singularity; furthermore, the contributions of the surface convolution integral
need to consider the local solid angle. Taking these into consideration, when the observation point is
exactly on the object surface S, the EFIEs and MFIEs can be modified as

mr1L1 K1 þ I1

mr2L2 K2 þ I2

� �
~Js
Ms

� �
¼ � n̂1 � Einc

1
n̂2 � Einc

2

� �
(48)

� I1 þK1ð Þ ϵr1L1

� I2 þK2ð Þ ϵr2L2

� �
~Js
Ms

� �
¼ � n̂1 � ~H

inc
1

n̂2 � ~H
inc
2

" #
(49)

where n̂1 and n̂2 ¼ n̂ are the outward unit normal directions for medium 1 and medium 2, respectively, and
the normalized ~Js ¼ �0Js and ~H

inc ¼ �0H
inc are used here. For i = 1, 2, one has

I i f½ � ¼ n̂i � n̂ð Þ Oi

4p
f½ � (50)

Li f½ � ¼ jk0n̂�
ð
S

gi r, r
0ð Þf r0ð Þds0 þ ∇

k2i

ð
S

gi r, r
0ð Þ∇0

s � f r0ð Þds0
2
4

3
5 (51)

Ki f½ � ¼ n̂��
ð
s
∇gi r, r

0ð Þ � f r0ð Þds0 (52)

where f ¼ ~Js, Ms, n̂ ¼ n̂2 ¼ �n̂1 is the object’s unit outward normal, �Ð represents the Cauchy principal
integral, and Oi is the internal solid angle in region i; note that O2 = O. Note that a Cauchy principal
integral is one that does not include the contribution of the singular point at r = r0 in the above equations,
which avoids the singularity of the derivative of Green’s function.

For an electric impedance boundary, since M ¼ �n̂� e�e~Js on the surface S, only the first equations
above are needed. Thus, the EFIE for an electric impedance boundary is

mriLi þ I i þKið Þn̂� e�e½ � ~Js
� � ¼ �n̂i � Einc (53)
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and the MFIE for an impedance object is

I i þKið Þ � ϵriLin̂� �̂e½ � ~Js
� � ¼ n̂i � �0H

inc
i (54)

When e�e ¼ 0, the object becomes a PEC. Note that while the EFIE is applicable to both closed PEC
objects and PEC shells, the MFIE only applies to closed PEC objects. This is because for a PEC shell, the
electric current density on the shell is no longer given by Js ¼ n̂�H, but by Js ¼ n̂� H2 �H1ð Þ where
H1 and H2 are the magnetic fields on both sides of the shell.

Once the unknown current densities are obtained, the vector potentialsA and F can be obtained through
appropriate Green’s functions

Asct
i ¼ mi

ð
S
ds0~Js r0ð Þgi r� r0ð Þ, Fsct

i ¼ ϵi

ð
S
ds0Ms r

0ð Þgi r� r0ð Þ (55)

where g1, 2(r) are scalar Green’s functions for the homogeneous media in the outer (i = 1) and inner
(i = 2) regions, respectively.

Alternatively, the field everywhere in the ith region (i = 1, 2) can be found by

Oi

4p
E rð Þ ¼ Einc

i rð Þ þ �
ð
S
∇gi r, r

0ð Þ �Mi r
0ð Þds0

þ jk0�0mri

ð
S

gi r, r
0ð ÞJi r0ð Þ þ 1

k2i
∇gi r, r

0ð Þ∇0
s � Ji r0ð Þ

" #
ds0

(56)

Oi

4p
H rð Þ ¼ Hinc

i rð Þ þ �
ð
S
∇gi r, r

0ð Þ � Ji r
0ð Þds0

þ jk0�0ϵri

ð
S

gi r, r
0ð ÞMi r

0ð Þ þ 1

k2i
∇gi r, r

0ð Þ∇0
s �Mi r

0ð Þ
" #

ds0
(57)

where Ji ¼ � n̂i � n̂ð Þ~Js and Mi ¼ � n̂i � n̂ð ÞMs because of the normal directions being opposite for inner
and outer regions. Note that in the above, if the observation point is away from the surface of the object,
Oi = 4p; when the observation point is on the surface S, only for the tangential components of the field,
one uses Oi for the left-hand sides, but 4p for Oi for the normal components of E and H.

Combined Field Integral Equations
Combined integral equations are used to overcome the internal resonance problem: when the operating
frequency is near the object’s internal resonance frequencies, the tangential electric and/or magnetic field
on the object surface is not unique, as one may add any linear combination of the eigenmodes to the
solution and the integral equation would still be satisfied. This is because the current due to an eigenmode
of the cavity does not radiate.

The combined field integral equations can be obtained from Eqs. 48 and 49 by taking a linear
combination of the two equations as
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amr1L1 � 1� að Þ I1 þK1ð Þ a I1 þK1ð Þ þ 1� að Þϵr1L1

amr2L2 � 1� að Þ I2 þK2ð Þ a I2 þK2ð Þ þ 1� að Þϵr2L2

� �
~Js
Ms

� �

¼ �
n̂1 � aEinc

1 þ 1� að Þ ~Hinc
1

h i
n̂2 � aEinc

2 þ 1� að Þ ~Hinc
2

h i
2
4

3
5 (58)

where 0 	 a 	 1 is the factor of the EFIE.
Alternatively, one can add the two equations in Eq. 48 to form one EFIE, and the equations in Eq. 49 to

form one MFIE to yield the following CFIE:

mr1ℒ1 þ mr2ℒ2 I1 þ I2 þK1 þK2

I1 þ I 2 þK1 þK2 �ϵr1ℒ1 � ϵr2ℒ2

� �
~Js
Ms

� �

¼ �
n̂� Einc

1 � Einc
2

� �
n̂2 � ~H

inc
2 � ~H

inc
1

	 
" # (59)

Note that in the special case where the surface is smooth, one has I1 � I2 ¼ � O
4p in the above equations.

The integral equation in Eq. 59 is also known as the PMCHWT (Poggio-Miller-Chang-Harrington-Wu-
Tsai) formulation based on the works by Poggio andMiller (1973), Chang and Harrington (1977), andWu
and Tsai (1977).

Method of Moments (MOM)
The surface integral equations in Eqs. 48 and 49 are referred as the SIEs in strong form. Denote ~Js ¼ �0Js.
Expand ~Js and Ms in terms of divergence-conforming basis functions fn

J and fn
M:

~Js ¼
XNJ

n¼1

Jnf
J
n rð Þ, Ms ¼

XNM

n¼1

Mnf
M
n rð Þ (60)

and substitute them into Eqs. 48 and 49. Let the testing functions for ~Js and Ms be wm
J and wm

M,
respectively. By testing Eq. 48 with the testing functions n̂� wJ

m and n̂� wM
mð

S
ds

n̂� wJ
m 0

0 n̂� wJ
m

� �
� mr1ℒ1 I1 þK1

mr2ℒ2 I2 þK2

� �
~Js
Ms

� �

¼
ð
S
ds

n̂� wJ
m 0

0 n̂� wJ
m

� �
� n̂� Einc

1
�n̂� Einc

2

� �

one has

ZJ
1 ZM

1
ZJ
2 ZM

2

� �
J
M

� �
¼ VE

1
VE

2

� �
(61)

where J and M are vectors containing the unknown expansion coefficients in Eq. 60 for i = 1, 2,
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ZJ
i �
ð
S
ds n̂� wJ

m

� � � mriℒi f
J
n

� �
¼ jk0mri

ð
S
ds

ð
S
gi r, r

0ð ÞwJ
m rð Þ � f Jn r0ð Þds0

� jk0mri
k2i

ð
S
ds

ð
S
gi r, r

0ð Þ∇s � wJ
m rð Þ∇0

s � f Jn r0ð Þds0
(62)

ZM
i �
ð
S
ds n̂� wJ

m

� � � Ki þ I i½ � fMn
� �

¼ �1ð Þi
ð
S
ds

Oi rð Þ
4p

n̂� wJ
m rð Þ� � � fMn rð Þ

þ
ð
S
ds�ÐwJ

m rð Þ � ∇gi r, r0ð Þ � fMn r0ð Þ� �
ds0

(63)

Note that integration by parts is used in the second terms ofZ1
J andZ2

J. Similarly, the excitation vectors are
given by

VE
i ¼ �

ð
S
ds n̂� wJ

m

� � � n̂i � Einc
i

� �
�1ð Þiþ1

ð
S
dswJ

m rð Þ � Einc
i rð Þ

(64)

Note that in the above, the identity n̂� wð Þ � n̂� að Þ ¼ a � w if n̂ � w ¼ 0 is used. Equation 61 is the
MOM matrix equation for the surface integral equation for the general case.

By the same token, the MFIEs in Eq. 49 can be written in a matrix form using the MOM

ZJ
1 ZM

1
ZJ
2 ZM

1

� �
J
M

� �
¼ VH

1
VH

2

� �
(65)

where for i = 1, 2,

ZM
i �
ð
S
ds n̂� wM

m

� � � ϵriℒi f
M
n

� �
¼ jk0ϵri

ð
S
ds

ð
S
gi r, r

0ð ÞwM
m rð Þ � fMn r0ð Þds0

� jk0ϵri
k2i

ð
S
ds

ð
S
gi r, r

0ð Þ∇s � wM
m rð Þ∇0

s � fMn r0ð Þds0
(66)
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ZJ
i ��

ð
S
ds n̂� wJ

m

� � � I i þKi½ � fJn
� �

¼ �1ð Þiþ1
ð
S
ds

Oi rð Þ
4p

n̂� wM
m rð Þ� � � f Jn rð Þ

�
ð
S
ds�Ð SwM

m rð Þ � ∇gi r, r0ð Þ � f Jn r0ð Þ� �
ds0

(67)

Note that the integration by parts has been used in the second terms ofZ1
M andZ2

M. Similarly, the excitation
vectors are given by

VH
i ¼ �

ð
S
ds n̂� wM

m

� � � n̂i � ~H
inc
i

	 

¼ �1ð Þiþ1

ð
S
dswM

m rð Þ � ~Hinc
i rð Þ

(68)

Divergence-Conforming Basis Functions

A Straight Triangle Element
When solving for Js andMs in the surface integral equations, the normal component should be continuous
between adjacent elements. Vector basis functions satisfying this condition are known as divergence-
conforming basis functions.

For a straight triangle element, there are three mixed-order divergence conformation basis functions.
These are the so-called CN/LT basis functions, because their normal component is constant along an edge,
while the tangential component with respect to an edge changes linearly within an element. These CN/LT
functions are also known as the triangular rooftop or Rao-Wilton-Glisson (RWG) functions. The ith
divergence-conforming basis corresponding to the ith edge of a triangle on the xy plane can be written as

2

1
0

0

1

2

Fig. 2 Divergence-conforming basis function B0 associated with edge 0 (from node 1 to node 2) on a triangle. This is also
known as the constant-normal/linear tangential (CN/LT) basis function. In computational electromagnetics, this is also better
known as the Rao-Wilton-Glisson (RWG) function. The other two basis functions on this triangle, B1 and B2, are similar and
thus not shown here
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Bi ¼ oiẑ� siþ2∇siþ1 � siþ2∇siþ2ð Þ, i ¼ 0, 1, 2 (69)

where si (i = 0,1,2) are the simplex coordinates of the three vertices of the triangle. The divergence-
conforming basis function B0 for a triangle is shown in Fig. 2.

A Reference Square Element
A curved quadrilateral element can be mapped into a reference square element by curvilinear mapping.
On square reference element, the Mth order divergence-conforming basis functions are

B x,Mð Þ ¼ x̂f Mð Þ
i xð Þf M�1ð Þ

j �ð Þ, i ¼ 0, � � �,M ; j ¼ 1, � � �,M � 1

B �,Mð Þ ¼ �̂f M�1ð Þ
i xð Þf Mð Þ

j �ð Þ, i ¼ 0, � � �,M � 1; j ¼ 0, � � �,M (70)

where fi
(M)(x) is the Mth mixed-order scalar basis function. For example, the 1st mixed-order rooftop

functions are

B x, 1ð Þ ¼ x̂p �ð Þt xð Þ
B �, 1ð Þ ¼ �̂t �ð Þp xð Þ (71)

where p(x) is a pulse basis function and t(x) is a triangular basis function. One such 1st mixed-order
rooftop function, B(x, 1), is shown in Fig. 3.

Coordinate Transformation for Divergence-Conforming Basis Functions
The above divergence-conforming basis functions have been given on a straight triangle and a square
element. These can be referred to as the reference elements. In practice, however, one requires the
elements to be able to conform with the problem geometry; thus, curved triangle and quadrilateral

0 1

2 3

Fig. 3 Divergence-conforming basis function (CN/LT element) B02
(x,1) in a reference square element, where subscript

02 indicates that the face is formed by vertices 0 and 2. The other three basis functions associated with the four faces, B01,
B23, and B13, are similar except they are associated with the other three faces
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elements are needed. The basis functions in such elements can be derived from those in the reference
elements.

Contravariant Transformation: For vector integral equations, the unknowns are the electric and
magnetic current densities (Js and Ms). Since these vectors have normal component continuity across
adjacent elements, one needs to use the contravariant transformation

B ¼ 1

det Jð Þ J
T B̂ (72)

where B̂ is its representation in the reference element where it has normal continuity (contravariant
components), or equivalently

Bx

By

Bz

2
4

3
5 ¼ 1

det Jð Þ J
T

B̂x0

B̂�0

B̂z0

2
64

3
75 (73)

Here the vector B̂ in the reference domain has been written in its contravariant components

B̂ ¼ B̂ � x̂0
	 


x̂þ B̂ � �̂0� �
�̂ þ B̂ � ẑ0

	 

ẑ ¼ B̂x0 x̂þ B̂�0 �̂ þ B̂z0 ẑ (74)

Examples of such field vectors are electric flux density D and magnetic flux density B. The divergence of
such a vector can be written as

∇ � B ¼ 1

det Jð Þ ∇̂ � B̂ (75)

where ∇̂ � B̂ represents the divergence in the reference element.
The surface integral equations are often applied to curved surfaces. Thus, one needs to map a curved

element in three dimensions into a flat surface in two dimensions where the reference 2-D elements (e.g.,
triangle or square) are located. If the 2-D reference coordinates are (x, n), the mapping is

@

@x
@

@�

2
664

3
775 ¼ J

@

@x
@

@y
@

@z

2
666664

3
777775, J ¼

@x

@x
@y

@x
@z

@x
@x

@�

@y

@�

@z

@�

2
664

3
775 (76)

where the Jacobian matrix J is a 2 � 3 matrix and can be obtained easily by Lagrange interpolation
functions (scalar basis functions) {fn(x, �)}:
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x ¼
X
n

xnfn x, �ð Þ

y ¼
X
n

ynfn x, �ð Þ

z ¼
X
n

znfn x, �ð Þ
(77)

where (xn, yn, zn) are the locations of the control points. Under this transformation, the differential surface is

ds ¼ jJjdxd� (78)

where |J| is not exactly the determinant of the Jacobian matrix as this Jacobian matrix is not square;
instead, it is given by

jJj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@y

@x
@z

@�
� @z

@x
@y

@�

� 2

þ @z

@x
@x

@�
� @x

@x
@z

@�

� 2

þ @x

@x
@y

@�
� @y

@x
@x

@�

� 2
s

(79)

The contravariant transformation for the divergence-conforming vector is

Bx

By

Bz

2
4

3
5 ¼ 1

Jj j J
T B̂x0

B̂�0

� �
, or B ¼ 1

Jj j J
T B̂ (80)

The divergence of this vector is

∇s � B ¼ 1

Jj j ∇̂ � B̂ ¼ 1

Jj j
@B̂x0

@x
þ @B̂�0

@�

 !
(81)

The above expressions can be substituted into Eqs. 66 and 67 to obtain the impedance matrix in theMOM.

MOM Solution and MLFMA Acceleration
In the traditional MOM, matrix Eqs. 61 and 65 can be rewritten as

ZI ¼ V (82)

where Z is called the impedance matrix and I contains all the unknown expansion coefficients.
Traditionally, in the MOM the matrix Eq. 82 is solved either directly by methods such as Gauss

elimination or LU decomposition or iteratively by Krylov subspace methods (Harrington 1968). How-
ever, as these impedance matrices are dense and complex, solving these matrix equations is very
expensive. If the total number of unknowns in the system is N, a direct method costs (N2) in memory
and O(N3) in CPU time, which are prohibitive for large-scale problems.

The most remarkable breakthrough in integral equation solvers is the development of the fast multipole
method (Rokhlin 1983; Coifman et al. 1993) and multilevel fast multipole algorithm (MLFMA, also
called MLFMM) (Song and Chew 1995). It has been developed to reduce the CPU and memory
requirements for the iterative solver from O(N2) to O(N log N), where N is the total number of unknowns.
For more details of the MLFMA, the reader is referred to Chew et al. (2001). The MLFMA has been
utilized in design tools such as FEKO.
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Finite Element Method

The three-dimensional antenna design problem can be solved by the frequency domain finite element
method (FEM) through the weak form formulation. The FEM has the excellent capability of modeling
arbitrary structures with its unstructured mesh and can also treat material anisotropy and dispersion easily
(Jin 1993; Volakis et al. 1998). Here the goal for the FEM is to solve Maxwell’s equations in a 3-D
anisotropic medium. The vector Helmholtz equation can be derived from Maxwell’s curl equations
(Faraday’s law and Ampere’s law) as

�∇� m�1
r ∇� E

	 

þ k20ϵrE ¼ Se (83)

where the source terms are

Se ¼ jom0Jþ ∇� m�1
r M

	 

and the anisotropic and potentially lossy medium is characterized by the complex relative permittivity and
permeability tensors ϵr and mr, respectively.

Weak Form Equation
One can derive the weak form of Maxwell’s equations for anisotropic media by testing Eq. 83 with a
vector testing function wm:ð

V
� ∇� wmð Þ � m�1

r ∇� Eð Þ þ k20wm � ϵrE
h i

dv

¼
ð
S
wm � n̂� m�1

r ∇� Eð Þdsþ
ð
V
wm � Sedv ¼ �jom0

ð
S
wm � n̂�Hð Þdsþ

ð
V
wm � Sedv

(84)

These equations must be solved in conjunction with the outer boundary conditions.
Note that for both PEC and PMC outer boundary conditions, the surface integral terms in the above two

equations are equal to zero.
For an unbounded problem, exact or approximate boundary conditions can be used at the outer

boundary to mimic a radiation boundary condition. In recent years, the perfectly matched layer (PML)
has become a powerful absorbing boundary condition. If PML is used an outer absorbing medium
(Teixeira and Chew 1998), the permittivity and permeability tensors must be modified as

ϵ
0
r ¼ det Sð Þ½ ��1SϵrS, m0r ¼ det Sð Þ½ ��1SmrS (85)

where

S ¼ diag
1

ex
,
1

ey
,
1

ez

� �
(86)

and e� ¼ a� � jo�=o is the complex stretching factor in � direction (� = x, y, z) and a� is the scaling
factor, while o is the attenuation factor. For the special case of the PML for an isotropic medium, one has
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ϵ
0
r ¼ ϵrL, m

0
r ¼ mrL,L ¼ Diag

eyez
ex

,
exez
ey

,
exey
ez

� 
(87)

The PML can be backed at the outer boundary by a perfect electric conductor or by a perfect magnetic
conductor, making boundary integral term disappear in the weak form equation.

Curl-Conforming Vector Basis Functions

Edge Elements for Straight Tetrahedrons
For the vector electromagnetic problem, if scalar basis functions are used to expand the unknown field
E above, they will produce spurious modes. Curl-conforming vector basis functions must be used. The
most commonly used basis functions in 3-D electromagnetic problems in FEM are the mixed-order curl-
conforming vector basis functions developed by Nedelec in 1980. These basis functions are commonly
known as edge elements because they are based on the edges of the element, and the tangential
components of these basis functions are one order lower than the normal component.

CT/LN (constant tangential/linear normal) edge elements are the lowest mixed-order edge elements for
a tetrahedron in 3-D (Peterson et al. 1997). There are six such basis functions, each corresponding to one
edge of the tetrahedron. The basis function for the edge ij (from node i to node j) is

Bij ¼ wij si∇sj � sj∇si
� �

(88)

where wij is the edge length between nodes i and j and si and sj are the simplex coordinates of these nodes
in the tetrahedron. The curl of this basis is ∇� Bij ¼ constant within the element; the divergence of this
basis∇ � Bij ¼ 0within the element, but it is nonzero at the edges because of the discontinuity of its normal
component at the edges.

The CT/LN edge elements for a tetrahedron are shown in Fig. 4.
The LT/QN (linear tangential/quadratic normal) edge elements are the next higher mixed-order basis

functions for a tetrahedron. They have linear tangential component and quadratic normal component
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Fig. 4 CT/LN edge elements Bij in a tetrahedron
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within an element. There are 20 such edge elements for one tetrahedron. If the four nodes of the
tetrahedron are labeled as nodes 1, 2, 3, and 4, then these 20 LT/QN edge elements contain:

• 12 linear tangential functions (two per edge)

B 1ð Þ
ij ¼ si∇sj, i 6¼ j (89)

where ij = 12, 21,13, 31,14, 41, 23, 32, 24, 42, 34, 43 and
• 8 quadratic normal functions (two per face)

B 2ð Þ
ijk ¼ sisj∇sk � sisk∇sj, i 6¼ j 6¼ k (90)

where (i, j, k) = (1, 2, 3) and (2, 3,1) for face 123; (1, 2, 4) and (2, 4,1) for face 124; (2, 3, 4) and (3, 4, 2)
for face 234; and (1, 3, 4) and (3,4,1) for face 134. Note that these are unnormalized basis functions, i.e.,
their tangential components are not equal to 1 at the locations corresponding to edges.

Edge Elements for a Cube
The Mth mixed-order curl-conforming basis functions in a reference cubic element are

B Mð Þ
x, ijk ¼ x̂f M�1ð Þ

i xð Þf Mð Þ
j �ð Þf Mð Þ

k zð Þ,
i ¼ 0, � � �,M � 1; j, kð Þ ¼ 0, � � �,M

B Mð Þ
�, ijk ¼ �̂f Mð Þ

i xð Þf M�1ð Þ
j �ð Þf Mð Þ

k zð Þ,
j ¼ 0, � � �,M � 1; i, kð Þ ¼ 0, � � �,M

B Mð Þ
z, ijk ¼ ẑf Mð Þ

i xð Þf Mð Þ
j �ð Þf M�1ð Þ

k zð Þ,
k ¼ 0, � � �,M � 1; i, jð Þ ¼ 0, � � �,M

(91)

The edge elements for a hexahedron are shown in Fig. 5.
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Fig. 5 CT/LN edge element Bx, 000 in a reference cube, where x̂ is along the direction of edge 01
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Mapping Curl-Conforming Basis Functions to Nonstandard Elements
The edge elements shown above are for standard straight tetrahedron and cube elements. In practice, one
would need to be able to apply these elements to nonstandard elements such as curved tetrahedron
elements and straight and curved hexahedron elements. One needs to ensure that not only the geometry is
properly mapped but also the basis functions satisfy the continuity of tangential components.

If the coordinate mapping from (x, y, z) coordinates to (x, �, z) coordinates is defined by

@

@x
@

@�
@

@z

2
666664

3
777775 ¼ J

@

@x
@

@y
@

@z

2
666664

3
777775, J ¼

@x

@x
@y

@x
@z

@x
@x

@�

@y

@�

@z

@�
@x

@z
@y

@z
@z

@z

2
666664

3
777775 (92)

where J is the Jacobian matrix, one can define the base vectors in the (x, �, z) coordinates as

x̂
�̂
ẑ

2
4
3
5 ¼ J

x̂
ŷ
ẑ

2
4
3
5 (93)

In addition, one can define the reciprocal base vectors as

x̂
0

�̂0

ẑ
0

2
64

3
75 ¼

∇x
∇�
∇z

2
4

3
5 ¼

@x
@x

@x
@y

@x
@z

@�

@x

@�

@y

@�

@z
@z
@x

@z
@y

@z
@z

2
6666664

3
7777775

x̂
ŷ
ẑ

2
4
3
5 ¼ 1

det Jð Þ
�̂ � ẑ
ẑ� x̂
x̂� �̂

2
4

3
5 (94)

Similarly, it can be shown that

x̂
�̂
ẑ

2
4
3
5 ¼ det Jð Þ

�̂0 � ẑ
0

ẑ
0 � x̂

0

x̂� �̂

2
64

3
75 (95)

The base vectors and reciprocal base vectors satisfy the orthogonality

x̂ � x̂0 ¼ �̂ � �̂0 ¼ ẑ � ẑ0 ¼ 1 (96)

x̂ � �̂0 ¼ x̂ � ẑ0 ¼ �̂ � ẑ0 ¼ 0 (97)

Obviously,

x̂ � �̂ � ẑ
	 


¼ 1

x̂
0 � �̂ � ẑ

0	 
 ¼ det Jð Þ (98)
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Under the above coordinate transformation, a vectorVmay be represented by its covariant components

V ¼ V � x̂
	 


x̂
0 þ V � �̂ð Þ�̂0 þ V � ẑ

	 

ẑ
0 ¼ Vxx̂

0 þ V��̂
0 þ Vzẑ

0
(99)

or by its contravariant components

V ¼ V � x̂0
	 


x̂þ V � �̂0ð Þ�̂ þ V � ẑ0
	 


ẑ ¼ Vx0 x̂þ V�0 �̂ þ Vz0 ẑ (100)

Covariant Mapping: To preserve the tangential continuity of a vector E after coordinate mapping, one
should use the covariant mapping as

E ¼ J�1Ê (101)

where Ê is its representation in the reference element where it has tangential continuity. This equation can
be written more explicitly as

Ex

Ey

Ez

2
4

3
5 ¼ J�1

Ex

E�

Ez

2
4

3
5 (102)

Examples of such field vectors are electric field E and magnetic field H.
Contravariant Mapping: On the other hand, for a field vector B that satisfies normal component

continuity, one should use the contravariant mapping

B ¼ 1

det Jð Þ J
T B̂ (103)

where B̂ is its representation in the reference element where it has normal continuity (contravariant
components), or equivalently

Bx

By

Bz

2
4

3
5 ¼ 1

det Jð Þ J
T

Bx0

B�0

Bz0

2
4

3
5 (104)

Examples of such field vectors are electric flux density D and magnetic flux density B.
The curl of a covariant vector is a contravariant vector. Therefore, the transformation of the curl

operation of a covariant vector is

∇� E ¼ 1

det Jð Þ J
T ∇̂ � Ê (105)

where ∇̂ � Ê is the curl in the reference (x, �, z) domain. All these transformations can be used in the weak
form Helmholtz equation to obtain the system matrix equation, as described below.
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Solution of FEM Matrix Equation
Now consider a simple case where the outer boundary is PEC or PMC, or an unbounded problem
truncated by PML backed by PEC or PMC. In this case, the surface integral term in Eq. 84 vanishes.
Thus, the weak form Eq. 84 becomes

�
ð
V
∇� wmð Þm�1

r � ∇� Eð Þdvþ k20

ð
V
wmϵr � Edv ¼

ð
V
wm � Sedv (106)

The unknown electric field is expanded as

E rð Þ 

XN
n¼1

enfn x, y, zð Þ (107)

where fn is the curl-conforming basis functions. Furthermore, one chooses wm = fm under the Galerkin
method. Then the weak form Eq. 106 is converted into a matrix equation

ZI ¼ V (108)

where

Zmn ¼ �
ð
V
∇� fm � m�1

r ∇� fndvþ k20

ð
V
fm � ϵrfndv (109)

and V is the excitation vector, while I contains all the unknown expansion coefficients for E.
The FEM system equation in Eq. 108 is a sparse matrix because low-order basis functions only have

interactions with their adjacent elements. For a smaller system, this equation can be solved by a direct
matrix inversion method such as Gaussian elimination of LU decomposition. However, if the number of
degrees of freedom N is too large for a direct solver, a preconditioned iterative solution is usually
performed. Recently, domain decomposition methods have gained much attention (Vouvakis
et al. 2006; Zhao et al. 2007). The domain decomposition method has also started to be utilized by
commercial tools such as HFSS.

Finite Difference Time Domain Method

For wideband simulations, a time domain solution is often preferred because one can obtain all results
within that bandwidth with just one single simulation. The goal for a time domain method is to solve for the
transient electromagnetic fields E(r, t) and H(r, t) as functions of space and time.

In this section, the finite difference time domain (FDTD) method (Yee 1966; Taflove and Hagness 2005)
is present as it is arguably the most commonly used time domain methods in computational electromag-
netics. The key in the FDTDmethod is the use of a staggered grid in both time domain and spatial domain,
so that the central differencing scheme can be applied to both spatial and temporal derivatives.

Time domain Maxwell’s curl equations, i.e., Faraday’s law and Ampere’s law,
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∇� E ¼ �m
@H
@t

� smH�M (110)

∇�H ¼ ϵ
@E
@t

þ seEþ J (111)

are solved in the FDTD method.

Time Domain PML Equations
For electromagnetic wave propagation and scattering in an unbounded medium, however, one needs to
apply the radiation boundary condition to the above equations. Recently, the most popular radiation
boundary condition is achieved by the perfectly matched layer (PML) originally proposed by Berenger
(Berenger 1994; Chew and Weedon 1994). However, that PML formulation is based on the split-field
components and is shown to be only weakly well posed. Here the strongly well-posed PML formulation
by Fan and Liu (2003) is used.

In the strongly well-posed PML, Faraday’s law and Ampere’s law are modified in the PML in a
compact form:

∇� ~E ¼ �m
@ ~H
@t

� sm þ mL1ð Þ ~H �M� smL1 þ mL2ð ÞH 1ð Þ � smL3H 2ð Þ (112)

∇� ~H ¼ ϵ
@ ~E
@t

þ se þ ϵL1ð Þ ~E þ Jþ seL1 þ ϵL2ð ÞE 1ð Þ þ seL3E
2ð Þ (113)

where Ẽ and ~H are the modified electric field and magnetic field inside the PML, while the field variables
with superscripts (1) and (2) denote the first and second time integration of the corresponding fields. In the
physical (non-PML) domain, Ẽ and ~H reduce to E andH, respectively, and no auxiliary fields are needed.
Moreover, it is assumed that the sources J and M only exist in the physical domain. The PML auxiliary
time-integrated fields are governed by ordinary partial differential equations:

@E 1ð Þ

@t
¼ ~E �L0E

1ð Þ (114)

@E 2ð Þ

@t
¼ E 1ð Þ (115)

@H 1ð Þ

@t
¼ ~H �L0H

1ð Þ (116)

@H 2ð Þ

@t
¼ H 1ð Þ (117)

In the above,

L0 ¼ Diag ox,oy,oz

� �
(118)
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L1 ¼ Diag oy þ oz � ox,ox þ oz � oy,ox þ oy � oz

� �
(119)

L2 ¼ Diag ox � oy

� �
ox � ozð Þ, oy � ox

� �
oy � oz

� �
, oz � oxð Þ oz � oy

� �� �
(120)

L3 ¼ Diag oyoz,ozox,oxoy

� �
(121)

Equations 112, 113, 114, 115, 116, and 117 constitute the unsplit-field, strongly well-posed PML
equations, with some auxiliary ordinary differential equations for E(1), E(2), H(1), and H(2). Note that
except for the lower-order terms, Eqs. 112, and 113 are identical to original 3-D Maxwell’s equations;
furthermore, the lower-order terms require little additional computational cost since they are obtained by
the ordinary differential equations.

In the above,ox,oy, andoz are the PML attenuation coefficients along the x, y, and z directions and are
usually chosen to have a quadratic profile, increasing from the inner PML boundary to the outer boundary
(Liu 1997, 1999).

Finite Difference Temporal Discretization
The 3-D FDTDmethod discretizes the fields with staggered grids in both temporal and spatial dimensions.
In the temporal dimension, for example, the electric field and magnetic current density are defined at the
integer time steps

~E
n ¼ E r, t ¼ nDtð Þ, Mn ¼ M r, t ¼ nDtð Þ; (122)

while the magnetic field and electric current density are defined at the half-integer time steps

Hnþ1=2 ¼ H r, t ¼ nþ 1=2ð ÞDtð Þ, Jnþ1=2 ¼ J r, t ¼ nþ 1=2ð ÞDtð Þ (123)

The central finite difference approximation in time gives

@f r, tð Þ
@t

¼ f r, t þ Dt=2ð Þ � f r, t � Dt=2ð Þ
Dt

þ O Dt2
� �

(124)

where O(Dt2) indicates that the error term is of second order with Dt, as can be proved by using Taylor
expansion. Similarly, if one uses the forward or backward finite differencing schemes, the error will be
only first order. Using Eq. 124 in Eqs. 111 and 110, at t = (n + 1/2)Dt, one has

ϵ rð ÞE
nþ1 � En

Dt
þ se rð ÞE

nþ1 � En

2

 ∇�Hnþ1=2 � Jnþ1=2
	 


(125)

Similarly, at t = nDt, one has

m rð ÞH
nþ1=2 �Hn�1=2

Dt
þ sm rð ÞH

nþ1=2 �Hn�1=2

2

 ∇� En �Mnð Þ (126)

Hence,
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Hnþ1
2 ¼ m� Dtsm=2

ϵþ Dtsm=2
Hn�1

2 � Dt
mþ Dtsm=2

∇� En þMn½ � (127)

Enþ1 ¼ ϵ� Dtse=2
ϵþ Dtse=2

En þ Dt
ϵþ Dtse=2

∇�Hnþ1=2 þ Jnþ1=2
h i

(128)

This is a leap-frog system:

H�12,E0
� �! H1=2 ! E1 ! H3=2 ! E2 ! H5=2� � � (129)

Through the time stepping, Hn + 1/2 and En+1 can be found for all time steps provided that ∇� E and
∇�H can be obtained for the earlier time steps. The curl operations in the above are obtained by the
spatial central differencing scheme below.

Finite Difference Spatial Discretization
Similar to the above staggered temporal grid where E andH are staggered by half a time step, one adopts
the Yee grid for the spatial discretization so that the central differencing scheme can be applied. The
computational domain of dimensionsLx � Ly � Lz x� xmin, xmax ¼ xmin þ Lx½ �ð Þ,y� ymin, ymax ¼ ymin þ Ly

� �
,

z� zmin, zmax ¼ zmin þ Lz½ �� is discretized uniformly by Nx � Ny � Nz cells, each with dimensions Dx � Dy
� Dz, where Dx = Lx/Nx, Dy = Ly/Ny, and Dz = Lz/Nz are the cell size along the x, y, and z directions,
respectively. The integer grid point locations are

xi ¼ xmin þ i� 1ð ÞDx, i ¼ 1, � � �,Nx þ 1
yi ¼ ymin þ j� 1ð ÞDy, j ¼ 1, � � �,Ny þ 1
zk ¼ zmin þ k � 1ð ÞDz, k ¼ 1, � � �,Nz þ 1

(130)

while the half-integer grid points are at

xiþ1
2
¼ xmin þ i� 1

2

� 
Dx, i ¼ 1, � � �,Nx

yjþ1
2
¼ ymin þ j� 1

2

� 
Dy, j ¼ 1, � � �,Ny

zkþ1
2
¼ zmin þ k � 1

2

� 
Dz, k ¼ 1, � � �,Nz

(131)

Ex

Ey

Ez

Hz

Hy

Hx

Δy/2
Δ z/2

Δx/2

Fig. 6 The relative locations of field components in a 1/8 cell of the Yee staggered grid
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Furthermore, the temporal grid is also staggered, with the integer temporal grid points at

tn ¼ nDt, n ¼ 1, � � �,Nt (132)

while the half-integer temporal grid points are at

tnþ1
2
¼ nþ 1

2

� 
Dt, n ¼ �1, � � �,Nt (133)

Different components of the electromagnetic fields are located at different locations in this Yee grid, as
shown in Fig. 6.

Specifically, one sets the tangential electric field components at the edge centers of a unit cell,

En
x, iþ1=2, j, k ¼ Ex xiþ1

2
, yj, zk; tn

	 

En
y, i, jþ1=2, k ¼ Ey xi, yjþ1

2
, zk; tn

	 

En
z, i, j, kþ1=2 ¼ Ez xi, yj, zkþ1

2
; tn

	 
 (134)

and the same locations for J:

J
nþ1

2

x, iþ1=2, j, k ¼ J x xiþ1
2
, yj, zk; tnþ1

2

	 

J
nþ1

2

y, i, jþ1=2, k ¼ J y xi, yjþ1
2
, zk; tnþ1

2

	 

J
nþ1

2

z, i, j, kþ1=2 ¼ J z xi, yj, zkþ1
2
; tnþ1

2

	 
 (135)

The normal magnetic field components are set at the face centers of the unit cell,

H
nþ1

2

x, i, jþ1
2, kþ1

2
¼ Hx xi, yjþ1

2
, zkþ1

2
; tnþ1

2

	 

H

nþ1
2

y, iþ1
2, j, kþ1

2
¼ Hy xiþ1

2
, yj, zkþ1

2
; tnþ1

2

	 

H

nþ1
2

z, iþ1
2, jþ1

2, k
¼ Hz xiþ1

2
, yjþ1

2
, zk; tnþ1

2

	 
 (136)

and the same locations for M:

Mn
x, i, jþ1

2, kþ1
2
¼ Mx xi, yjþ1

2
, zkþ1

2
; tn

	 

Mn

y, iþ1
2, j, kþ1

2
¼ My xiþ1

2
, yj, zkþ1

2
; tn

	 

Mn

z, iþ1
2, jþ1

2, k
¼ Mz xiþ1

2
, yjþ1

2
, zk; tn

	 
 (137)

Note that in the above, the superscripts have been used to denote the temporal locations according to the
central differencing scheme in temporal derivatives.

Then using the central differencing scheme (124) yields, for example,
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@H
nþ1

2
z

@y

����
iþ1

2, j, k

 1

Dy
H

nþ1
2

z iþ 1

2
, jþ 1

2
, k

� 
� H

nþ1
2

z iþ 1

2
, j� 1

2
, k

� � �

� 1

Dy
Dy H

nþ1
2

z

h i
iþ 1

2
, j, k

�  (138)

where the difference operator Dx (x = x, y, z) operating on a function f d� � ¼ x, y, z; d ¼ n or nþ 1
2ð Þ at

spatial temporal grid point d is defined at the spatial grid point (a, b, c) as

Dx f d�

h i
a, b, c

¼ f d�, a, b, cð Þþ�̂12
� f d�, a, b, cð Þ��̂12

, x, � ¼ x, y, z (139)

Note that in the above expression, d, a, b, c are integers or half-integers depending of the field components.

Outer Boundary Conditions
Note that in the above updating equations, boundary conditions are needed. If a computational domain
of Lx � Ly � Lz is uniformly divided into Nx � Ny � Nz cells, with Dx = Lx/Nx, Dy = Ly/Ny, and
Dz = Lz/Nz, the number of field components in the whole domain is

Ex : Nx Ny þ 1
� �

Nz þ 1ð Þ
Ey : Nx þ 1ð ÞNy Nz þ 1ð Þ
Ez : Nx þ 1ð Þ Ny þ 1

� �
Nz

Hx : Nx þ 1ð ÞNyNz

Hy : Nx Ny þ 1
� �

Nz

Hz : NxNy Nz þ 1ð Þ

where it is assumed that the outer boundaries have the tangential E and normal H components. These
boundary field components cannot be obtained by the time-stepping equations above, so they need to be
determined by boundary conditions.

PEC Boundary Conditions
When the PEC boundary condition are required on the outer boundaries, it is convenient to make the
tangential components of the electric field to be located at the outer boundaries, as discussed above where
the tangential electric field components are located at the edge centers of a unit cell.

For example, PEC at x = xmin and x = xmax planes can be simply applied by setting

Ey, 1, j, k ¼ Ey,Nxþ1, j, k ¼ Ez, 1, j, k ¼ Ez,Nxþ1, j, k ¼ 0
Hx, 1, j, k ¼ Hx,Nxþ1, j, k ¼ 0

(140)

In this case, one does not need to update these field components if they have been set zero at the beginning
of the program.

Another boundary condition is the impedance boundary condition at one or all outer boundaries.

PMC Boundary Conditions
For PMC boundary conditions, it is more convenient to set the tangential components of the magnetic
field at the outer boundary. This will require to shift the cell half a cell or, equivalently, exchange E and
H in the above field locations. Then, one can apply the boundary conditions easily by setting
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Hy, 1, j, k ¼ Hy,Nxþ1, j, k ¼ Hz, 1, j, k ¼ Hz,Nxþ1, j, k ¼ 0
Ex, 1, j, k ¼ Ex,Nxþ1, j, k ¼ 0

(141)

Radiation Boundary Conditions
For unbounded media, one has to use a radiation condition to simulate the outgoing scattered fields so that
there is negligible reflection from the truncated boundary at the computational edge. Several approximate
radiation boundary conditions are possible:

• Transmitting boundary condition: Field extrapolation by using various transmitting boundary
conditions, for example, Liao’s, Lindman’s, and Mur’s absorbing boundary conditions.

• Sponge boundary condition: Tapered absorber outside the computational domain. This consists of a
layer of lossy material of finite thickness outside the interested domain; the outer boundary conditions
of this absorber are usually the PEC or PMC boundary conditions. This boundary condition is also
known as the sponge boundary condition.

• PML absorber: In this case, the perfectly matched layer is used as a special absorber that provides
highly effective attenuation to outgoing waves without giving rise to noticeable reflections.

In the following subsection, the PML absorbing boundary condition will be presented in the updating
equations in the FDTD method.

The PML Updating Equations
The strongly well-posed PML for 3-D lossy media formulated by Fan and Liu (2003) is used here as
presented in Eqs. 112, 113, 114, 115, 116, and 117. The discretization of these equations is similar to the
regular Maxwell’s equations, with the only difference being the additional ordinary differential equations
in Eqs. 114, 115, 116, and 117. With the staggered grid discretization in temporal and spatial derivatives,
one can obtain the field updating equations for the magnetic field:

~H
nþ1

2

x, i, jþ1
2, kþ1

2
¼ Bx1 ~H

n�1
2

x, i, jþ1
2, kþ1

2
� Bx2Dy ~E

n
z

� �
i, jþ1

2, kþ1
2

þ Bx3Dz ~E
n
y

h i
i, jþ1

2, kþ1
2

� Bx4H
1ð Þ, n
x, i, jþ1

2, kþ1
2

� Bx5H
2ð Þ, n
x, i, jþ1

2, kþ1
2
� Bx0Mn

x, i, jþ1
2, kþ1

2

(142)

~H
nþ1

2

y, iþ1
2, j, kþ1

2
¼ By1 ~H

n�1
2

y, iþ1
2, j, kþ1

2
� By2Dz ~E

n
x

� �
iþ1

2, j, kþ1
2

þ By3Dx ~E
n
z

� �
iþ1

2, j, kþ1
2
� By4H

1ð Þ, n
y, iþ1

2, j, kþ1
2

� By5H
2ð Þ, n
y, iþ1

2, j, kþ1
2
� By0Mn

y, iþ1
2, j, kþ1

2

(143)

~H
nþ1

2

z, iþ1
2, jþ1

2, k
¼ Bz1 ~H

n�1
2

z, iþ1
2, jþ1

2, k
� Bz2Dx ~E

n
y

h i
iþ1

2, jþ1
2, k

þ Bz3Dy ~E
n
x

� �
iþ1

2, jþ1
2, k

� Bz4H
1ð Þ, n
z, iþ1

2, jþ1
2, k

� Bz5H
2ð Þ, n
z, iþ1

2, jþ1
2, k

� Bz0Mn
z, iþ1

2, jþ1
2, k

(144)

where the finite difference coefficients are
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Bx0 ¼ 2Dt
2mþ Dt sm þ oyzxm

� �
�����
i, jþ1

2, kþ1
2

(145)

Bx1 ¼
2m� Dt sm þ oyxzm

� �
2mþ Dt sm þ oyzxm

� �
�����
i, jþ1

2, kþ1
2

(146)

Bx2 ¼ Bx0=Dy, Bx3 ¼ Bx0=Dz (147)

Bx4 ¼
2Dt smoyzx þ fxyfxzm
	 


2mþ Dt sm þ oyzxm
� �

������
i, jþ1

2, kþ1
2

(148)

Bx5 ¼ 2Dtsmoyoz

2mþ Dt sm þ oyzxm
� �

�����
i, jþ1

2, kþ1
2

(149)

By0 ¼ 2Dt
2mþ Dt sm þ oxzym

� �
�����
iþ1

2, j, kþ1
2

(150)

By1 ¼
2m� Dt sm þ oxzym

� �
2mþ Dt sm þ oxzym

� �
�����
iþ1

2, j, kþ1
2

(151)

By2 ¼ By0=Dz, By3 ¼ By0=Dx (152)

By4 ¼
2Dt smoxzy þ fyxfyzm
	 


2mþ Dt sm þ oxzym
� �

������
iþ1

2, j, kþ1
2

(153)

By5 ¼ 2Dtsmoxoz

2mþ Dt sm þ oxzym
� �

�����
iþ1

2, j, kþ1
2

(154)

Bz0 ¼ 2Dt
2mþ Dt sm þ oxzym

� �
�����
iþ1

2, jþ1
2, k

(155)

Bz1 ¼
2m� Dt sm þ oxyzm

� �
2mþ Dt sm þ oxyzm

� �
�����
iþ1

2, jþ1
2, k

(156)
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Bz2 ¼ Bx0=Dx, Bz3 ¼ Bz0=Dy (157)

Bz4 ¼
2Dt smoxyz þ fzxfzym
	 


2mþ Dt sm þ oxyzm
� �

������
iþ1

2, jþ1
2, k

(158)

Bz5 ¼ 2Dtsmoxoy

2mþ Dt sm þ oxyzm
� �

�����
iþ1

2, jþ1
2, k

(159)

Similarly, the updating equations for electric field components are

~E
nþ1
x, iþ1

2, j, k ¼ Ax1 ~E
n
x, iþ1

2, j, k þ Ax2Dy ~H
nþ1

2
z

h i
iþ1

2, j, k

� Ax3Dz ~H
nþ1

2
y

h i
iþ1

2, j, k
� Ax4E

1ð Þ, nþ1
2

x, iþ1
2, j, k

� Ax5E
2ð Þ, nþ1

2

x, iþ1
2, j, k

� Ax0J
nþ1

2

x, iþ1
2, j, k

(160)

~E
nþ1
y, i, jþ1

2, k ¼ Ay1 ~E
n
y, i, jþ1

2, k þ Ay2Dz ~H
nþ1

2
x

h i
i, jþ1

2, k

� Ay3Dx ~H
nþ1

2
z

h i
i, jþ1

2, k
� Ay4E

1ð Þ, nþ1
2

y, i, jþ1
2, k

� Ay5E
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2

y, i, jþ1
2, k

� Ay0J
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2

y, i, jþ1
2, k

(161)

~E
nþ1
z, i, j, kþ1

2
¼ Az1 ~E

n
z, i, j, kþ1

2
þ Az2Dx ~H

nþ1
2

y

h i
i, j, kþ1

2

� Az3Dy ~H
nþ1

2
x

h i
i, j, kþ1

2

� Az4E
1ð Þ, nþ1

2

z, i, j, kþ1
2

� Az5E
2ð Þ, nþ1

2
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2
� Az0J

nþ1
2

z, i, j, kþ1
2

(162)

where the finite difference coefficients are

Ax0 ¼ 2Dt
2ϵþ Dt se þ oyzxϵ

� �
�����
iþ1

2, j, k
(163)

Ax1 ¼
2ϵ� Dt se þ oyzxϵ

� �
2ϵþ Dt se þ oyzxϵ

� �
�����
iþ1

2, j, k
(164)

Ax2 ¼ Ax0=Dy, Ax3 ¼ Ax0=Dz (165)
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Ax4 ¼
2Dt seoyzx þ fxyfxzϵ
	 


2ϵþ Dt se þ oyzxϵ
� �

������
iþ1

2, j, k

(166)

Ax5 ¼ 2Dtseoyoz

2ϵþ Dt se þ oyzxϵ
� �

�����
iþ1

2, j, k
(167)

Ay0 ¼ 2Dt
2ϵþ Dt se þ oxzyϵ

� �
�����
i, jþ1

2, k
(168)

Ay1 ¼
2ϵ� Dt se þ oxzyϵ

� �
2ϵþ Dt se þ oxzyϵ

� �
�����
i, jþ1

2, k
(169)

Ay2 ¼ Ay0=Dz, Ay3 ¼ Ay0=Dx (170)

Ay4 ¼
2Dt seoxzy þ fyxfyzϵ
	 


2ϵþ Dt se þ oxzyϵ
� �

������
i, jþ1

2, k

(171)

Ay5 ¼ 2Dtseoxoz

2ϵþ Dt se þ oxzyϵ
� �

�����
i, jþ1

2, k
(172)

Az0 ¼ 2Dt
2ϵþ Dt se þ oxyzϵ

� �
�����
i, j, kþ1

2

(173)

Az1 ¼
2ϵ� Dt se þ oxyzϵ

� �
2ϵþ Dt se þ oxyzϵ

� �
�����
i, j, kþ1

2

(174)

Az2 ¼ Az0=Dx, Az3 ¼ Az0=Dy (175)

Az4 ¼
2Dt seoxyz þ fzxfzyϵ
	 


2ϵþ Dt se þ oxyzϵ
� �

������
i, j, kþ1

2

(176)

Az5 ¼ 2Dtseoxoy

2ϵþ Dt se þ oxyzϵ
� �

�����
i, j, kþ1

2

(177)

In the above, if the field components are in the PML region, the above PML equations require the time-
integrated electric field components:
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~E
n
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E
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2
y ¼ 2� oyDt
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2
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~E
n
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E
1ð Þ, nþ1

2
z ¼ 2� ozDt

2þ ozDt
E

1ð Þ, n�1
2

z þ 2Dt
2þ ozDt

~E
n
z (183)

where the second-order time-integrated fields are updated first because this avoids storing two steps of the
first-order time-integrated fields.

Similarly, for the time-integrated magnetic field components, one has

H 2ð Þ, n
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2
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x
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¼ H 2ð Þ, n�1
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2
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2
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H 2ð Þ, n
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1ð Þ, n�1

2
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z

h i
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H 1ð Þ, n
x ¼ 2� oxDt
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2
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H 1ð Þ, n
y ¼ 2� oyDt
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2þ oyDt
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n�1

2
y (188)

H 1ð Þ, n
z ¼ 2� ozDt

2þ ozDt
H 1ð Þ, n�1

z þ 2Dt
2þ ozDt

~H
n�1

2
z (189)

The above equations give all field components for all time steps if the outer boundary conditions are
known (usually it is the PEC boundary condition outside the PML). The procedure for the 3-D FDTD
method is as follows:

Step 0: For time step n = 0, initialize all field components so that they satisfy the initial conditions for

~H
�1

2, Ẽ0, H 2ð Þ,�1, H 1ð Þ,�1, E 2ð Þ,�1
2, and E 1ð Þ,�1

2. For non-PML regions (i.e., the physical domain), the
time-integrated fields are not needed. (Most of the time these are zero before t = 0.) For a required time
window tmax, find Nt = ceil(tmax/Dt), where Dt should be smaller than the maximum time step allowed
by the CFL stability condition.

Step 1: Update the time-integrated magnetic fields H(2),n and then H(1),n inside the PML.

Step 2:Update the magnetic field components ~H
nþ1

2 inside PML and ~H
nþ1

2 in the physical domain besides
the outer boundary (these can use the same array). Apply boundary conditions for the magnetic field
components on the outer boundary; for PML backed by a PEC outer boundary, this is not needed
explicitly because the zero normal magnetic field on PEC is already set in the initial condition.

Step 3: Update the time-integrated electric field E 2ð Þ, nþ1
2 and then E 1ð Þ, nþ1

2 inside the PML.
Step 4: Update the electric field component En+1 everywhere except for the outer boundary. Apply

boundary conditions for the electric field components on the outer boundary; for PML backed by a PEC
outer boundary, this is not needed explicitly because the zero tangential electric field is already set in the
initial condition.

Step 5: Increase the time step index n by 1. If n > Nt, then exit; otherwise, go back to Step 1 above.

Note that in the non-PML (physical) region, there is no need to include the time-integrated field
components.

Accuracy and Stability Conditions
As discussed above, the FDTD method uses a regular (structured) grid where the grid lines are parallel to
the coordinate axes. For objects having curved surfaces, therefore, there will be a so-called staircasing
error due to the staircased approximation. As a result, the FDTD has lower accuracy than the finite
element method in terms of geometrical representation. Typically, one can use the following guideline to
choose the discretization step:

Dx 	 lmin

NPPW
(190)

where lmin is the minimum wavelength in the whole domain at the highest frequency of interest andNPPW

denotes the sampling density in terms of the number of points per minimum wavelength. Typically, one
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needs to choose NPPW = 10 to 20 to ensure good accuracy. However, this is only a rough guideline, as the
numerical dispersion error increases linearly with the number of time steps.

Given a fixed spatial discretization, the maximum time step increment has to satisfy the following
condition:

Dt 	 Dxffiffiffiffi
D

p
cmax

(191)

in order for the FDTD method to be stable, where cmax is the maximum speed of light
cmax ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min mrϵrð Þp

and D is the dimensionality; for example, D = 3 for 3-D problems.

Techniques to Improve the FDTD Method
In a homogeneous medium or a smooth medium where the material properties change continuously with
space, all field components are continuous. Therefore, the central finite difference scheme used in the
FDTD method will give the second-order accuracy.

On the other hand, if the material is discontinuous inside the computational domain, the FDTDmethod
will only have the first-order accuracy. Furthermore, for curve geometries, the FDTD method will
introduce the staircasing approximation error, further decreasing the accuracy.

Despite the simplicity and robustness of the FDTD method, its lower accuracy greatly limits its
applications. Over the years, many techniques have been proposed to improve the FDTD method,
especially to remove the first-order accuracy and the staircasing approximation. Below only the enlarged
cell technique to improve the FDTD method will be discussed.

The Enlarged Cell Technique (ECT)
A conformal finite difference time domain (CFDTD) method has been put forward by Dey and Mittra
(Dey and Mittra 1997; Yu and Mittra 2000) to accurately model curved perfectly conducting objects. The
method deforms the grid locally to accommodate the curvature of the PEC surface and, therefore, avoids
the significant staircase error of the conventional FDTD method in approximating boundaries.

In the CFDTD method, however, the deformed grid may lead to a numerical instability due to the
existence of some small-area cells. To overcome this problem, previous methods either remove the
problematic small cells by assuming them totally inside the conducting bodies or reduce the time step
(Dey and Mittra 1997) to obtain a stable solution. These will either decrease the accuracy or increase the
run time.

The ECTwas developed by Xiao and Liu (2004, 2008) to preserve the accuracy of the CFDTDmethod
without affecting its efficiency from the FDTD method. The most important step in the ECT is to enlarge
the unstable small cells into the adjacent cells so that the scheme remains stable, yet without affecting the
local accuracy because it makes the electromotive force conservative.

An obvious advantage of the ECT is that it is more efficient than the conventional CFDTD method
because it can obtain a stable solution without time step increment reduction. Another advantage is found
by recalling that the FDTD algorithm usually has a smaller dispersion error for a larger time step. So the
ECT is even more accurate than the conventional CFDTDmethod by allowing a larger time step. Such an
ECT method has been utilized in commercial tool Wavenology.

Toward the Multiscale DGTD Method
The predominant time domain commercial tools utilize FDTD (or FIT) methods, which are limited to
single-scale problems. In order to solve multiscale problems with both electrically coarse but large regions
as well as electrically fine details, it is desirable to use different techniques for different regions.
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The discontinuous Galerkin time domain (DGTD) method provides such a possibility. It uses the
discontinuous Galerkin method; thus, different regions can have different and non-conformal meshes
(or grids), thereby allowing different schemes to be used to their advantages. The finite element time
domain (FETD), finite difference time domain (FDTD), and spectral element time domain (SETD)
methods have been combined in the DGTD framework to solve multiscale problems (Chen and Liu
2013). Furthermore, a nonlinear circuit solver based on SPICE has been combined into this DGTD
method to allow true circuit-field interactions in some commercial tools (e.g., Wavenology).

Conclusion

Commercial antenna design tools have seen rapid development over the last two decades. Although most
tools use the traditional finite element method, method of moments, and finite difference time domain
method, there is a noticeable trend toward solving multiscale problems by developing new technologies
that can allow multi-solver integration. This is expected to greatly impact the antenna design optimization
and the integration of antennas with sensor networks.
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Abstract

The principal computational electromagnetics techniques for solving antenna problems are reviewed. An
introduction is given on a historical review of how antenna problems were solved in the past. The call for
precise solutions calls for the use of numerical methods as found in computational electromagnetics.
A brief introduction on differential equation solutions and integral solutions is given. The Green’s
function concept is introduced to facilitate the formulation of integral equations. Numerical methods
and fast algorithms to solve these equations are discussed.

Then an overview of how electromagnetic theory relates to circuit theory is presented. Then the concept
of partial element equivalence circuit is introduced to facilitate solutions to more complex problems. In
antenna technology, one invariably has to have a good combined understanding of the wave theory and
circuit theory.

Next, the discussion on the computation of electromagnetic solutions in the “twilight zone” where
circuit theory meets wave theory was presented. Solutions valid for the wave physics regime often
become unstable facing low-frequency catastrophe when the frequency is low.

Due to advances in nanofabrication technology, antennas can be made in the optical frequency regime.
But their full understanding requires the full solutions of Maxwell’s equations. Also, many models, such
as perfect electric conductors, which are valid at microwave frequency, are not valid at optical frequency.
Hence, many antenna concepts need rethinking in the optical regime.

Next, an emerging area of the use of eigenanalysis methods for antenna design is discussed. This can be
the characteristic mode analysis or the natural mode analysis. These analysis methods offer new physical
insight not possible by conventional numerical methods.

Then the discussion on the use of the domain decomposition method to solve highly complex and
multi-scale antenna structures is given. Antennas, due to the need to interface with the circuit theory, often
have structures ranging from a fraction of a wavelength to a tiny fraction of a wavelength. This poses a
new computational challenge that can be overcome by the domain decomposition method.

Many antenna designs in the high-frequency regime or the ray optics regime are guided by ray physics
and the adjoining mathematics. These mathematical techniques are often highly complex due to the rich
physics that come with ray optics. The discussion on the use of these new mathematical techniques to
reduce computational workload and offering new physical insight is given.

A conclusion section is given to summarize this chapter and allude to future directions.
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Introduction

Maxwell’s equations, completed by James Clerk Maxwell in 1864, have been guiding electromagnetic
theory for over 150 years now (Maxwell 1865). Solutions to Maxwell’s equations have offered physical
insight and guidance for myriads of electromagnetics technologies including antenna design. In the
beginning, it was the use of analytic solutions. For instance, the solution of a radiating Hertzian dipole
offers insight on the physics of its radiation. It provides physical insight on its radiation pattern, the near
field and far field of the dipole, its radiation resistance, its directivity, and its gain. These are all figures of
merit for an antenna designer.

Due to the complex shapes of antennas, closed-form solutions are quickly exhausted. Then approxi-
mate solutions are sought, and they have been used to gain physical insight into the antenna design. For
instance, the half-wave dipole has no closed-form solution, but physical intuition tells that the current
distribution is close to being sinusoidal. Hence, many figures of merit of a half-wave dipole can be
calculated based on approximate models.

Another area of antenna design where approximation methods reign superior is in high-frequency
antennas or reflector antennas. Due to the large radius of curvature of the antennas, quasi-optical
techniques such as the physical optics approximation can be used to ascertain the radiation field of the
antenna. Ray optics can be used to gain physical insight. Edge diffraction from the edge of the parabolic
reflector can be estimated by using the canonical solution of the Sommerfeld half-plane (Sommerfeld
1896). Uniform asymptotic theory and uniform theory of diffraction are both used to refine the solutions
(Keller 1962; Kouyoumjian and Pathak 1974; Lee and Deschamps 1976; Hansen 1981). The idea of
approximate methods to gain physical insight prevails up to the late 1970s and early 1980s even for
microstrip antenna designs (Lo et al. 1979; Chew and Kong 1981).

Even though modeling and simulation are important, physical insight is equally important. The
most famous of this is the design of the Yagi-Uda antenna, proposed by Professor Yagi and his
student, Uda, in 1926 (Yagi and Uda 2014). They had the insight that an array of dipoles can act
like a waveguide. The simple dipole, made of a length of straight wire, is also called a linear
antenna. When this linear antenna is slightly less than a half wavelength, it is capacitive, and an
array of them can act like a waveguide. Hence, the dipole array, put in front of a half-wave dipole,
can help guide the energy of the radiation field in the forward direction, enhancing its radiation in
that direction and, hence, its directivity. When the linear antenna is slightly larger than a half
wavelength, it becomes inductive and ceases to be a waveguide. Such a linear antenna is used as a
reflector in the Yagi-Uda array.

When numerical methods became popular, integral equation methods were designed to solve linear
antennas more accurately. Examples of such integral equation are the Hallén integral equation and
Pocklington integral equation (Balanis 2012b). Approximate numerical method together with semi-
analytic methods was used to solve these integral equations. Semi-analytic methods were popular because
of the slowness of computers back then (King 1956).
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Computers became powerful very quickly with the advancement of the electronic computers. Differ-
ential equation solvers as well as integral equation solvers were developed to solve Maxwell’s equations.
In differential equation solvers, the unknowns are the field. Hence, the unknown counts are spread over
volumetric space and, therefore, scale as the volume of the space of L3 where L is the typical length of the
simulation region. Moreover, in order to simulate an infinite region, absorbing boundary conditions are
needed at the boundary of the simulation domain.

In integral equation solvers, the unknowns are the sources or the currents on the antenna. In many cases,
these unknowns reside on the surface of the antenna structure, and thus, they live in a 2D manifold. In the
cases of antennas that can be modeled by wire structures, the unknowns reside on a 1D manifold.
Consequently, integral equation solvers became popular because the unknown count can be smaller.
Very soon, integral equations were solved with the method of moments and applied to linear antennas.
Linear antennas were popular because the unknowns were functions of a one-dimensional variable, and
henceforth, they live in a one-dimensional space. Usually, many practical problems can be solved with a
small number of unknowns and therefore needing the solution of small matrix systems.

As the antenna structure becomes more complex, more unknowns are needed. Early complex antenna
structures were modeled with wire structures as in the numerical electromagnetic code (NEC). Very soon,
surface patch models were developed and popularized (Burke and Poggio 1981; Rao et al. 1982).

A drawback of the integral equation solver is the memory usage. The matrix system is often dense and
hence consumesO(N2) memory usage. For antennas that can be modeled as surface patches,N�O((kL)2)
where L is the typical dimension of the antenna. Henceforth, memory usage scales as (kL)4 for them.
When used to solve linear antennas, N � O(kL) and therefore the memory usage scales as (kL)2.

On the other hand, differential equation solvers are easier to implement even though unknown counts are
larger. Moreover, the innate matrix system that is related to a differential equation is inherently sparse.
Therefore, when combined with iterative solvers, the matrix system can be efficiently stored with O(N)
memory where N is the dimension of the matrix and, hence, the number of unknowns. Furthermore, each
matrix-vector product can be effected in O(N) operations. Consequently, the iterative solver can be effected
withO(N) operations per iteration. Typically, the memory usage and CPU time usage scale as (kL)3 when grid
dispersion error is ignored. Hence, it could be more efficient than integral equation solvers.

A powerful differential equation solver is the finite-difference time-domain method invented by Yee
(1966) and popularized by Taflove (1995). In this method, the construction of the matrix system is not
needed, and a matrix-vector product is effected by some rather simple operations. Since only the unknown
fields at different time steps need to be stored, the memory and CPU time usage are both O(N). Even
though FDTD is solved with time stepping, it is equivalent to iteration in iterative solvers. Iterative solvers
are generally applied to frequency-domain solutions.

Due to advancements of differential equation solvers, their efficiency, and their simplicity, they have
become rather popular. They can be used to solve problems with tens of thousands of unknowns easily
and, hence, many practical real-world problems.

In recent years, however, fast integral equation solvers have been developed (Rokhlin 1990; Coifman
et al. 1993; Chew et al. 2001). In these solvers, iterative methods are used to solve integral equations
without the need to construct the matrix system. Thus, the matrix is never stored and only the action of the
matrix on a vector needs to be stored. Henceforth, memory requirements of the fast integral equation
solvers are reduced to O(N log N) for dynamic problems while to O(N) to static or low-frequency
problems. Moreover, the matrix-vector product can be effected in O(N log N) operations. So, the memory
usage for an antenna that can be modeled by surface currents scales as (kL)2 and the operations per
iteration scale as (kL)2 log kL, greatly reducing the memory and CPU usage compared to differential
equation solvers.
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Differential Equations-Maxwell’s Equations
Maxwell’s equations establish that the theory of electricity and magnetism and theory of optics are
actually one and the same theory. Both of them have waves propagating at the velocity of light. The
velocity of light, and astronomical number, was established by Roemer via astronomical observation long
ago (in year 1676).

Maxwell’s equations in the time domain are completely described by the four equations:

∇�H ¼ Jþ @D
@t

(1)

∇� E ¼ � @B

@t
(2)

∇ � D ¼ ϱ (3)

∇ � B ¼ 0 (4)

When Maxwell’s equations were first derived by Maxwell, they were not as elegant and succinct
as the above. It was the work of Oliver Heaviside who casts them into the above form (Heaviside
1888).

For time-varying problems, the third and the fourth equations are derivable from the first two by taking
their divergence. Hence, only the first two equations can be considered as independent, and only them
need to be solved for time-varying problems.

Since there are four unknowns E, H, D, and B with two independent equations, the constitutive
relations are the addition equations in order to obtain four equations and four unknowns, viz., for isotropic
media,

D ¼ ϵE (5)

B ¼ mH (6)

The above constitutive relations are sufficient to describe most materials at microwave frequencies. For
some materials such as ferrites, the above will have to be replaced with the constitutive relations for
anisotropic media.

The Yee algorithm will solve the first two of the above first-order partial differential equations directly.
But many algorithms will first convert the above into one second-order partial differential equation. By
assuming exp(�iot) dependence, @/@t can be replaced by� io in the above equations. Then by dividing
the first equation by ϵ, taking its curl, and then replacing the resultant right-hand side with the second
Maxwell’s equations, one arrives at

∇� ϵ�1∇�H� o2mH ¼ ∇� ϵ�1J (7)

Similarly, one has

∇� m�1∇� E� o2ϵE ¼ ioJ (8)
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One needs only solve one of the two equations above since they are derivable from each other. When
the above equation is solved by a numerical method, the field H or E is treated as the unknown, and the
source is assumed known.

Scalar and Dyadic Green’s Function
The Green’s function is useful because it expresses the field in terms of the source of a system. It is the point
source response of the partial differential equation or the field generated due to a point source. When a
medium is homogeneous, such a response or Green’s function can be found easily. It is well known that when
the Helmholtz equation is driven by a point source, the response is the scalar Green’s function, namely,

∇2g r, r0ð Þ þ k2g r, r0ð Þ ¼ �d r� r0ð Þ (9)

and g(r, r0) = exp(ik|r � r0|)/(4p|r � r0|) and k ¼ o
ffiffiffiffiffi
mϵ

p ¼ o=c. Hence, when the medium is homoge-
neous, the above vector wave equation can be written as

∇∇ � E� ∇ � ∇E� k2E ¼ iomJ (10)

where the identity has been used that ∇ � ∇ � E = ∇∇ � E�∇ � ∇E. Furthermore, by noting that
∇ � E ¼ ϱ=ϵ, the above becomes

∇2Eþ k2E ¼ �iomJþ ∇ϱ=ϵ (11)

By using the principle of linear superposition and the solution to Eq. 9, the solution to the above can be
written as

E rð Þ ¼ iom
ð
V
dr0g r, r0ð ÞJ r0ð Þ �

ð
V
dr0g r, r0ð Þ∇0ϱ r0ð Þ=ϵ (12)

¼ iom
ð
V
dr0g r, r0ð ÞJ r0ð Þ � 1

ioϵ
∇
ð
V
dr0g r, r0ð Þ∇0 � J r0ð Þ (13)

The above is reminiscent of that

E ¼ ioA� ∇f (14)

One can also symbolically write that

E rð Þ ¼ iom
ð
V
dr0G r, r0ð Þ � J r0ð Þ (15)

where the action of the dyadic Green’s function on the current J plus the integral is to effect the integral in
Eq. 12 above.

Integral Equation of Excitation
An antenna is usually made of metal and excited by a source. The source generates an incident field on the
antenna. At microwave frequencies, metallic structures can be approximated by a perfect electric
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conductor (PEC) where the tangential component of the electric field is zero. Otherwise, there would be
infinite surface current flowing on the surface of the PEC structure.

As a result, a surface current is induced on the antenna so as to produce a field that cancels the incident
field on the surface of the antenna structure. This physical concept can be represented by the following
integral equation:

�t̂ � Einc rð Þ ¼ iomt̂ �
ð
S
dS0G r, r0ð Þ � J r0ð Þ, r� S (16)

Source Excitation Methods
Reflector antennas are usually driven by a feed which is usually a horn antenna. The modeling of the feed
can be done by the equivalence principle. For smaller antennas at lower frequencies, oftentimes, an
antenna is driven by a current source or voltage source at its terminal. The equivalence principle can be
used to obtain the equivalence problem that needs to be solved before approximations are made.

Equivalence Principle
The equivalence principle can be derived mathematically by invoking Green’s theorem for scalar waves
or vector Green’s theorem for electromagnetic waves. But it can be argued physically or by the
Gedankenexperiment. Imaging a set of sources generates E and H fields in free space. One defines a
surface S on which one will impress the surface electric current Js ¼ n̂�H and surface magnetic current
Ms ¼ E� n̂. One assumes that the fields E = H = 0 inside S and that the original fields are unchanged
outside S. These fields definitely satisfy the jump conditions induced by Js and Ms at the interface.
Furthermore, the fields outside satisfy the boundary conditions (including the radiation condition at
infinity) on the surface S, and hence, by the uniqueness theorem, they are the only solution (Figs. 1, 2, 3, 4,
and 5).

E, H Js = n̂ x H
Ms = E x n̂ 

Ms
Ms

Js

E, H

E = 0, H = 0

n̂

a b

c d

Fig. 1 By the equivalence principle, the four cases (a–c) and (d) generate equivalent fields outside the surface S
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Since the fields are zero inside S, one can insert a PEC inside S without affecting the fields outside.
When the PEC fills the whole of the volume inside S, then the surface current Js cannot radiate, as it will
induce an image current that is negative of itself. Consequently, the magnetic current Ms alone, when
impressed on the PEC surface, will radiate the same fields outside. A similar argument can be made when
the volume is filled with PMC or a mixture thereof.

Fig. 2 For a voltage source driving an antenna at the gap, the equivalence principle can be invoked to make the case on the
right to be equivalent to the case on the left. When the gap is filled with PEC, the electric current can be removed, with only the
magnetic current impressed on it. When the gap is filled with PMC, the magnetic current can be removed with the electric
current impressed on the PMC surface

Ms

Einc

z

z

Fig. 3 An antenna driven by a very thin magnetic current ribbon. The incident field generated by the magnetic current ribbon
can be approximated by a delta function

Z Z

Einc
Einc

d
2

d
2

Fig. 4 The plot of the incident field generated by a finite-width magnetic ribbon. The incident field generated by the finite-
width magnetic current ribbon can be approximated by a pulse function
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With the above equivalence principle established, one can use that to derive an equivalence model for
an antenna driven by a source at its gap. First, by wrapping a surface S on the antenna snugly, one can
represent the fields outside the antenna with impressed currents Js and Ms per the above discussion. On
the PEC surface of the antenna,Ms= 0 since n̂� E ¼ 0. The only nonzero surface currents are Js andMs

at the gap region. Now, one can fill the gap with PEC, and again, Js does not radiate. Hence, only Ms

impressed on the surface associated with the gap region is needed to produce the equivalent fields outside
the antenna.

The impressed magnetic current can be modeled by a magnetic ribbon current. This magnetic current
can be used to generate the incident field on the antenna, which will in turn induce a current on it. What is
to be noted is that the magnitude of the magnetic current is related to the voltage across the gap. When the
magnetic current ribbon is very thin, it produces a field that is sharply peaked at the location just beneath
the ribbon. This sharply peaked function can be approximated by a delta function. Therefore, one can
approximate the incident field just as a delta function. This is the well-known delta-gap model.

When the magnetic ribbon has a finite width, the incident field it generates will have a Gaussian-like
pulse shape. This can be used as the incident field on the antenna. This Gaussian pulse will induce a
voltage across the gap. But for simplicity, one can approximate the Gaussian pulse incident field with a
square pulse with the same area. It will induce the same voltage drop across the gap (Lo et al. 2013).

To realize a magnetic ribbon source in the real world, one can use a small toroid as shown in Fig. 6. As is
well known, a small loop antenna is like a magnetic dipole, and the toroid can be thought of as a string of
magnetic dipoles forming a circle emulating a magnetic current loop. The current induced on the antenna
wire is a transformer action, and the antenna wire is the secondary winding of the transformer. Such
toroidal antennas have been used in well-logging exploration tools (Clark 1985).

Alternatively, one can fill the gap region with a perfect magnetic conductor (PMC) and impress only the
electric current Js as the equivalent current on the gap surface. One can solve this excitation problem to
obtain n̂� Eon the surface of the PMC gap and hence the voltage. With this voltage, one can calculate the
input impedance of the antenna.

But a gap filled with a PMC material is an idealization of an open circuit where no current can flow. As
an approximation, one can replace the gap with one filled with free space again and drive the antenna with
a current source at the gap. The resultant voltage at the gap can then be calculated to obtain the input
impedance. This is the current source driven antenna excitation model.

Subspace Projection Method
Integral equations and differential equations previously derived represent linear operator equations. One
can describe a general linear problem with a linear operator equation as

JZ

d
2

d
2

Z

–

Fig. 5 The antenna can also be excited by a current source. The current source can be represented by one basis function with
known and fixed amplitude
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Lf ¼ h (17)

where L represents a linear operator. This linear operator represents a differential operator in the case of
differential equations, while it represents an integral operator for integral equations. In mathematical
notation, one often writesL : V ! W, meaning that it is a linear operator that maps elements of the vector
space V to the elements of the vector space W, where V is known as the domain space and W the range
space of the operator L.

One illustrates the subspace projection method with scalar equations as the mathematical concept does
not differ greatly when vector equations are used. For the differential operator, an explicit form may be

∇2 þ k2
� �

f rð Þ ¼ h rð Þ (18)

which is the Helmholtz wave equation or the frequency-domain version of the wave equation. A boundary
condition together with the radiation condition or a loss condition has to be stipulated in order to make the
solution to the above equation unique (Chew 1990).

For the integral equation, one can consider a scalar integral equation and an explicit form is given:ð
dr0g r, r0ð Þf r0ð Þ ¼ h rð Þ (19)

where g(r, r0) = exp(ik|r � r0|)/(4p|r � r0|) is the Green’s function which is also called the kernel.
These equations are not amenable to computation. They are equations in the infinite-dimensional

Hilbert space with uncountably infinite indices. To make them computable, one can find a subspace in
which an approximate solution of the above equations can be found and then project the solution into this
subspace. This process can be methodically described as follows.

One chooses a basis set with N basis functions fn, n = 1, . . ., N that spans the subspace that can
approximate the domain space of the operator. One expands the unknown f in terms of the basis functions
in this subspace, namely,

Fig. 6 A magnetic ribbon source can be approximated by a small toroid. The figure is from hyperphysics.phy-astr.gsu.edu/
hbase/magnetic/toroid.html
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f rð Þ ¼:
XN
n¼1

anf n rð Þ (20)

The linear operator equation can then be written as

XN
n¼1

anLf n ¼
:
h (21)

The above equation can only be approximately satisfied since one has picked a finite number of basis
functions. Moreover, the solution to Eq. 21 is still untenable. To make it more easily solvable, one
converts Eq. 21 into a matrix equation by weighting or testing the equation with wm(r), m = 1, . . ., N.
Consequently, one has

XN
n¼1

an wm,Lf nh i ¼ wm, hh i, m ¼ 1, � � �,N (22)

where the inner product is defined as

u, vh i ¼
ð
u rð Þv rð Þdr (23)

The integral is over the support of the functions u and v. When they are defined over a volume (surface),
one has a volume (surface) integral.

The above Eq. 22 implies that it can be exactly satisfied if one projects the Eq. 21 onto a subspace
spanned by wm(r), m = 1, . . ., N.

Recent research has shown that if the testing functions wm are chosen from the dual space of the range
space, the above can be a good approximation or matrix representation of the original operator equation
(Cools et al. 2009). The dual space can be larger or smaller than the range space.

Equation 22 now constitutes a matrix equation:

L � a ¼ h (24)

L
� �

mn
¼ wm,Lf nh i (25)

að Þn ¼ an (26)

hð Þm ¼ wm, hh i (27)

að Þ ¼ L
� ��1 � h (28)

The matrix equation can be solved by various means. In the above, the choice of the testing function is
determined by the auxiliary equation (Chew 1990). The testing function should be chosen so that the
auxiliary equation is solved accurately, whereas the choice of the expansion or basis function is to solve
the primary equation accurately. The auxiliary equation is the adjoint or the transpose of the original
equation where the range space and the domain space are swapped. It can be shown that the left domain
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space of an operator is the dual space of the range space. Hence, if the testing functions solve the auxiliary
equation well, they approximate the left domain space of the original operator, which is the dual space of
the range space of the original equation, well. This is in agreement with the aforementioned recent
findings.

The above procedure of converting the operator equation into a matrix equation is the underpinning
method behind the finite-element method or the method of moments. They are variously known as
Galerkin’s method, Petrov–Galerkin’s method, method of weighted residuals, collocation method, and
point matching method (Chew 1990, Chap. 5). But they all can be regarded as subspace projection
methods.

WhenL is a differential operator, the matrixL is sparse because a differential operator is a local operator.
However, when L is an integral operator, the matrix L is dense. In differential equations, the unknown is
the field that permeates all of space. Hence, the unknown count is usually large in differential equation
solvers. But they come with sparse matrix systems that are cheaper to solve and store.

For integral equations, the unknown is the induced current on the antenna structure. Hence, the
unknown count is smaller since the current resides only on or in a structure with finite support. But the
ensuing matrix system is dense and is hard to store. Moreover, the matrix assembly of forming the matrix
elements

wm,Lf nh i (29)

is tedious since the operator involves singularity that has to be evaluated with care (Graglia 1993).

Iterative Methods
When the unknown count is large, the matrixL is never generated. Instead, iterative, matrix-free methods
in numerical linear algebra are used to solve the matrix equation instead. Iterative methods can be made
matrix-free because one needs only to write a code to produce the result

L � a (30)

namely, the result of the action of a matrix on a vector, but not the matrix itself. For sparse matrices, this
action can be effected with O(N) operations. For dense matrices, it costs O(N2) to effect this action.
However, various fast solvers have been developed that allow this action to be effected inO(N) orO(N log
N) operations (Chew et al. 2001, ref. therein).

When it comes to solving a matrix equation iteratively, numerical linear algebra plays an important
role (Trefethen et al. 1997; Chew et al. 2009). The condition number and the distribution of the
eigenvalues of the matrix system determine the convergence rate of iterative methods. The Krylov
subspace method is a popular way to understand the convergence rate of iterative methods. In this
method, one finds the solution to the matrix equation by finding the best-fit solution in a subspace
called the Krylov subspace

KK L, r0
� �

¼ r0,A � r0,A
2 � r0, � � �,A

K�1 � r0
n o

(31)

where r0 ¼ h� L � a0 where a0 is the initial guess to the solution. The above Krylov subspace can
be generated by performing K � 1 matrix-vector product with the matrix L on the vector r0. The method
finds the optimal solution at the K-th iteration, aK, by letting it be aK = a0 + zK, such that zK �KK L, r0

� �
.

By so doing, the residual at the K-th iteration is
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rK ¼ h� L � aK
¼ r0 � L � zK � r0,L � r0,L

2 � r0, � � �,L
K � r0

n o
�KKþ1 L, r0

� � (32)

In other words, the residual error that is to be minimized can be written as

rK ¼ r0 þ a1L � r0 þ a2L
2 � r0 þ � � � þ aKL

K � r0

¼
XK
k¼0

akL
k � r0 ¼ Po

K L
� �

� r0
(33)

where

Po
K xð Þ ¼ 1þ a1xþ a2x2 þ � � � þ aKxK

is an optimal polynomial with a0 = 1 and the coefficients a1, . . ., aK are chosen to minimize rK.
To understand the convergence of the above matrix polynomial, one expands r0 in terms of the left and

right eigenvectors of L or (Chew et al. 2009, ref. therein)

r0 ¼
XN
n¼1

vn wt
n � r0

� �
(34)

where vn is the right eigenvector, whilewn is the left eigenvector. They can be shown to share the same set
of eigenvalues and are mutually orthogonal. That is, wn � vn0 = dnn0. Therefore,

L � vn ¼ lnvn (35)

wt
n � L ¼ lnwt

n (36)

where the eigenvalue ln can be complex. One can easily show that

L
k � r0 ¼

XN
n¼1

lknvn wt
n � r0

� �
(37)

By substituting the above into Eq. 33, one has

rK ¼
XN
n¼1

XK
k¼0

akl
k
nvn wt

n � r0
� �

¼
XN
n¼1

Po
K lnð Þvn wt

n � r0
� �

(38)

rK ¼
XK
k¼0

L
k � r0 ¼

XN
n¼1

Po
K lnð Þvn wt

n � r0
� �

(39)

r0 ¼ g � L � a0 (40)

r1 ¼ r0 þ a01L � r0 (41)
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It is seen that the residual error in the K-th iteration is proportional to the value of the optimal
polynomial PK

o (ln) at the N eigenvalues ln. If K = N, a polynomial can be found such that PK
o (ln) is

exactly zero at all these eigenvalues, meaning that the residual error is zero. When K is less than N, if the
eigenvalues are clustered together on the complex plane, the residual error can still be made small. Since
the polynomial has value such that Po

K 0ð Þ ¼ 1, if there are many eigenvalues near to the origin, it is
difficult to fit the polynomial so that it is small close to the origin. Hence, having eigenvalues close to the
origin is bad for convergence, since it is hard to find the fitting polynomial. By the same token, if the
eigenvalues are spread widely over the complex plane, it is hard to find a fitting polynomial as well. All
these cases give rise to a bad condition number of the matrix system which is defined as |lmax|/|lmin|, the
ratio of the largest eigenvalue to the smallest eigenvalue. Therefore, an ill-conditioned matrix has bad
convergence when solved with iterative solvers.

Fast Algorithm for Integral Equations
Due to the increased workload of numerical methods when the antenna structure becomes electrically
large (large compared to wavelength), there has been much interest in fast methods to solve the ensuing
matrix equations derived from Maxwell’s equations.

Differential equation solvers naturally give rise to sparse matrices. The solution process can be made
matrix-free easily. The downside is the existence of the grid dispersion error whose deleterious effect
increases with the size of the problem (Lee and Cangellaris 1992). In this case, the effort has been in
reducing the unknown counts as the unknowns are fields that permeate all of space pervasively. Also,
accuracy improvement is necessary to mitigate grid dispersion errors. A higher-order method is used to
reduce unknown counts but with the peril of reducing the sparsity of the matrix. Also, the unknown count
in differential equation solvers grows with the volume of the simulation region and, hence, suffers from
the cruelty of dimensionality.

Methods to invert the finite-element matrix directly have been studied extensively. Because of the
sparsity of the FEMmatrix for differential equations, it can be directly inverted in N1.5 in 2D and N2 in 3D
by the nested dissection ordering method (Axelsson and Barker 1984). Moreover, for domains where the
shape is oblong, the frontal method proves popular in inverting the finite-element matrix.

Another hot area of research in differential equation solvers is the design of absorbing boundary
conditions (ABCs) (Chew 1990, Chap. 4). Berenger’s perfectly matched layers (PMLs) (Berenger 1994)
and coordinate-stretching PML (Chew and Weedon 1994) have become highly popular among
numericists in this area. Coordinate-stretching PML draws inspirations from the area of matched
asymptotics where coordinate stretching is used to emphasize a certain physics of the problem. Further-
more, an anisotropic-medium PML has been developed (Sacks et al. 1995). This topic has spurred the
interest of many researchers.

Most ABCs are not perfect; a rigorous, perfect ABC is actually a boundary integral equation truncation
of a differential equation solution domain solved by FEM or FDM (Jin 2002; Volakis et al. 1998; Zhu and
Cangellaris 2006). This has been avoided in the past because boundary integral equations give rise to
dense matrix systems that are expensive to solve and store. But the advent of fast algorithms has changed
the landscape (Chew et al. 2001; Peng et al. 2011). Boundary integral equations accelerated by fast
algorithms have been used to reduce the domain size of finite-element methods since they act as rigorous
absorbing boundary conditions.

Cruelty of Computational Complexity
Integral equations were difficult and expensive to solve in the past. They usually give rise to a dense
matrix system requiring O(N3) computer time to solve and O(N2) memory requirements. These compu-
tational complexities are just too unwieldy for large problems. But advances in fast methods have
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eliminated this bottleneck by reducing the size of a in the exponent in Na in these computational
complexity scalings.

For iterative solvers, a sleuth of method can reduce the computational time complexity to O(N log N).
Moreover, many of these methods can be made matrix-free so that only the unknown vector and the
diagonal part of the matrix corresponding to near-neighbor interactions need to be stored. Hence, the
memory requirements can be reduced toO(N). There are essentially three popular methods to speed up the
solutions of integral equations:

• Fast Fourier transform-based techniques: In this technique, the integral operator is cast into a form that
resembles a convolutional integral as much as possible. Then FFT is used to expedite the convolution,
enabling its evaluation of matrix-vector products in O(N log N) operations. For surface structures or
sparsely packed structures where a lot of zero padding in the FFT is needed, the complexity is worse
and is not optimal (Borup and Gandhi 1984).

• Matrix compression-based techniques: The MOM matrix that follows from solving integral equations
is low rank. The reasons for low rank are two: over-discretization of mesh density and far interactions
between currents on the object. The Nyquist sampling theorem necessitates the discretization of at least
two points per wavelength in order to capture the oscillatory nature of the currents on an object. But
oftentimes, discretization far above the Nyquist sampling rate is used. In this case, redundancies are
created in the unknown counts, and the rank of the ensuing matrix system is lower rank than the
unknown counts. Such matrix systems can be easily compressed using matrix compression techniques,
such as wavelets (Wagner et al. 1993, ref. therein), adaptive cross approximations, simple fast
multipole, etc. (Zhao et al. 2004, ref. therein). Interaction matrices with low ranks due to far interactions
are harder to compress. They cannot be compressed beyond the Nyquist barrier (Wagner et al. 1993),
even though ray physics-based methods have been used to compress them further beyond the Nyquist
barrier. When wave physics is involved, the only viable way to compress the matrices for far interaction
efficiently is the multipole-based methods (Chew et al. 2001).

• Multipole-based methods: The simple fast multipole method can expedite the solution involving circuit
physics or Laplace’s solutions very easily. Extension of such an algorithm forwave physics cases has been
proposed, but its verbatim use for wave physics cases does not work. The only viable method of
expediting the wave physics case is the multilevel fast multipole algorithm (Chew et al. 2001), where
anterpolation and interpolation between levels are added. The algorithm is a tree-based algorithm. The
matrices for far interactions are analytically diagonalized on paper rather than by algebraic or numerical
means. The number of diagonal elements needed is proportional to the rank of the matrices. The reason is
that the ranks of the matrices increase with the group size compared to wavelength. Near the upper levels
of the inverted tree, the ranks of the matrices are higher, while near the lower levels, their ranks are lower.

To be of the varying ranks of these matrices, their dimensions are different for different levels even if
they are diagonalized. Hence, anterpolation and interpolation are needed between levels due to their
different ranks, very much in the spirit of the multilevel multigrid schemes. With this augmentation, the
multilevel fast multipole algorithm provides optimal complexity of performing a matrix-vector product
with O(N log N) complexity. It is with this algorithm that wave physics problems with tens of millions to
hundreds of millions and over three billion unknowns have been solved (Michiels et al. 2014).

The key to the multilevel fast multipole algorithm is the factorization of the matrix element Lij when
elements i and j are far apart. Then one can express (Chew et al. 2001).

Lij ¼ ~V
t
f , i, i1 � I

t
1 �

ebi1, i2 � It2 � � � �ebiN , L � eaLL0 � ebL0, jN � � �I2 � ebj2, j1 � I1 � ~Vs, j1, j (42)
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The factorization allows a matrix-vector product to emulate a multilevel telephone network connection as
shown in Fig. 7, where the number of telephone lines can be greatly reduced compared to a direct

telephone connection. In the above, the ea and eb matrices are diagonal, while the Ī matrices are quasi-
diagonal interpolation and anterpolation matrices that are not square. Hence, the storage requirements of
the factorized matrices are small, and they can be reused in a tree algorithm. There are log N levels in this
multilevel algorithm. Each level requires O(N) in workload as well as memory requirements. Hence, the
CPU and memory complexity are both O(N log N). Other factorizations do not lead to O(N log N)
complexity.

The Circuit Models of Electromagnetic Structures

When electromagnetic waves are guided between electronic components through interconnects such as
coaxial lines, strip lines, or other type of waveguides, a circuit is formed (Pozar 2011; Celik et al. 2002).
The electronic circuit system is the static or quasi-static approximation of electrodynamics. Both
fundamental circuit principles, Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL), can
be derived from Maxwell’s equations (Pillegi et al. 1995; Balanis 2012a). Antennas can be considered as
terminating devices in the circuit system for matching the impedance of the circuit to that of the
propagation channel within a certain frequency band. However, unlike most quasi-static or static circuit
components, the antenna’s working principle has to depend on the dynamic field. Due to the displacement
current, the electric field and the magnetic field couple to each other, which enables wave propagation
(Chew 1990). It means that the reliable antenna modeling methods have to be based on the full-wave
analysis. However, the circuit model of radiating structures can help to integrate their designs with other
circuit subsystems to characterize and optimize the system performance. Hence, parameters such as the
input impedance and return loss are popularly used. In practice, because a lot of antennas behave as the
low Q resonating tank, many of their designs also rely on circuit interpretations for the performance
optimization. Hence, circuit modeling methodologies for distributive electromagnetic structures will be
the focus in this part.

Basic Circuit Laws from Maxwell’s Equations

Resistance
For a current filament in a segment of the metallic wire with the finite conductivity s, if the internal electric
field E is uniform, the conducted current due to E is

J ¼ sE (43)

Fig. 7 The factorization of the matrix Lij in Eq. 42 allows the matrix-vector product to emulate a telephone network connection
(left) (Chew et al. 2001). The direct line connections between telephones (right) requires a large number of lines
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Both current density and field are vectors in the same direction for isotropic media. For the current
component flowing along the x direction in the Cartesian coordinate system, it is only related to the
x component of E

J x ¼ sEx (44)

For the static field, the electric field is equal to the negative gradient of the potential. If the conductor
cross-section area that is orthogonal to the x direction is DS and Jx is assumed to be constant over a very
small length DLx, one can derive the current through the conductor along the x direction from Eq. 44

Ix ¼
DVx

Rx
(45)

where DVx is the potential (voltage) drop along the x direction and Rx is

Rx ¼
DLx
sDS

¼ rDLx
DS

(46)

where r is the conventional resistivity. Hence, under the static approximation, Eq. 44 is the circuit Ohm’s
law in the x direction while Eq. 43 is the circuit Ohm’s law in all directions. For electrodynamics, the
electric field is not a simple gradient of the scalar potential. The current distribution could change rapidly
as a function of space. Hence, Ohm’s circuit law can only be applied for electrically small parts. For
electrically large circuit systems, the full circuit model truly based on electrodynamics will be very
complicated.

Inductance
Inductance characterizes the ability of a conductor in creating a voltage in either itself or other conductors
through the current flowing through it. Based on Faraday’s law, this definition is usually connected with
looped conductors (Pozar 2011; Balanis 2012a). However, with the help from auxiliary potentials, one
can define the partial inductance that is also consistent with the regular inductance definition. The
relationship between the induced voltage v, current i, and inductance L is defined as

v ¼ L
@i

@t
(47)

If the time-dependent voltage v is measured on the current loop itself, L is called the self-inductance. If
it is measured on another loop, L is called the mutual inductance.

It is also convenient to define the inductance through the magnetic flux when the dimension of the
circuit system is electrically small. If c is the total magnetic flux through the loop generated by a current i,
one has

c ¼ Li (48)

Assume that a loop is made of the perfect electric conductor and its cross section is zero. If the operating
frequency is so low that the loop is electrically small, then the current on the loop has almost zero phase
change. However, for the high-frequency case, the current changes rapidly. The conventional loop-based
inductance will become improper for the physical interpretation and modeling.
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Capacitance
The capacitance is the measure of the charge capacity of a conductor. It usually needs to be relative to a
certain reference voltage or potential. If it is relative to infinity, it is the self-capacitance. If it is relative to
another conductor, it is the mutual capacitance with that conductor. A classic definition of the capacitance
is

C ¼ Q

V
(49)

where Q is the net charge on the conductor while V is the bias DC voltage on the conductor relative to its
reference (the potential of its reference is usually considered as 0). This definition is in a dual relationship
with Eq. 48. Similar to Eq. 47, another definition can be written as (Balanis 2012a)

i ¼ C
@v

@t
(50)

Hence, the capacitance causes the branch currents between the conductor and its reference. Under the
dynamic situation, the voltage variation at different locations of the conductor could be highly different
and the potential itself is a limited term in describing the dynamic field. Hence, the practical capacitance
definition for the full-wave case is more complicated than the static case.

Generally, the capacitance is less sensitive to frequencies since most conductors being used are of high
conductivities. Hence, the static capacitance approximation based on Eq. 49 works very well in many
practical modeling methods.

KVL
Based on the integral form of Faraday’s law, the overall voltage drop along a closed loop can be written as

X
c

vc ¼
þ
C
d1 � E ¼ � @c

@t
(51)

where the total magnetic flux is c ¼
ð
S
ds � B, the subscript c could be R, L, or C, vR means the voltage

drop due to resistors in the loop, vL means the voltage drop due to inductors in the loop, and vCmeans the
voltage drop due to capacitors in the loop. Using Eq. 48, one has

X
c

vc ¼ �Ls
@i
@t

(52)

or

X
c

vc þ Ls
@i
@t

¼ 0 (53)

Here, Ls is the parasitic loop self-inductance when all lumped components are shorted. Sometimes it is
also called the strayed inductance (Balanis 2012a). When the circuit dimension is electrically small, Ls is a
very small value. For example, a circular loop with a 1 cm radius and 1 mmwire cross-section radius has a
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self-inductance of 2.99 � 10�8H. And it is already a very big circuit loop. Hence, if one ignores the
parasitic voltage introduced by Ls under the low-frequency assumption, Eq. 53 becomes the standard
Kirchhoff’s voltage law (KVL): X

c

vc ¼ 0 (54)

But if the frequency is very high, the voltage introduced by the self-inductance cannot be ignored.
Conventional KVL will not be accurate anymore. Equation 53 has to be used to consider the effect of Ls.

KCL
Based on the continuity equation, a circuit node enclosed by a small closed volume V satisfiesþ

S
dS � Jþ @

@t

ð
V
drr ¼ 0 (55)

where r is the volumetric charge density while J is the current density. Under the low-frequency
approximation, currents only flow through metal wires. The closed surface integral of the current density
becomes the summation of branch currents. Further, by Eqs. 49 and 50, one has

X
b

Ib þ Cn
@vn
@t

¼ 0 (56)

This equation is also for low frequencies (Balanis 2012a). The subscript b refers to all branches. Here,
vn is the node voltage while Cn is the total parasitic self-capacitance of all branches connected to the node
relative to the zero potential ground at infinity. It can be computed by excluding all lumped components
inside Vand computing the total self-capacitance of all conductors. At low frequencies, Cn is so small that
it could be approximated as zero. Then the standard Kirchhoff’s current law (KCL) is achieved:X

b

Ib ¼ 0 (57)

At high frequencies, the parasitic current introduced by the self-capacitance cannot be ignored. The
conventional KCL based on the pure circuit theory will not be accurate anymore.

Partial Element Equivalent Circuit Method
The partial element equivalent circuit (PEEC) method was developed by Albert Ruehli to solve parasitic
coupling problems by building the equivalence circuit based on the integral equation (Ruehli 1972, 1974;
Ruehli and Brennan 1973). It was initiated for static or quasi-static applications with no retardation (delay)
considered. Later it was extended to the full-wave case where the retardation is included. PEEC is a very
convenient bridging method between electromagnetics and circuit theories. It is broadly used by many
electronic design automation (EDA) softwares. It also greatly helps the modeling of resonating structures
such as antennas. Even though the PEEC method solves the problem in the circuit solver, its formulation
actually starts from the integral equation (Chew 1990). The modified nodal analysis (MNA)-based circuit
solvers (Ho et al. 1975) basically consider the electric field and magnetic field decoupling effect
happening at the low-frequency regime. Hence, it involves both KCL and KVL in the formulation.
Some low-frequency full-wave integral equation simulation methods have also been developed based on
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the same physical insight, such as the augmented electric field integral equation method (A-EFIE) (Qian
and Chew 2009).

Partial Inductance
Assume that there are two loops i and j with currents Ii and Ij (Ruehli 1972). For low frequencies, both Ii
and Ij are approximated to be constant over each loop. Then the mutual inductance Lij between two loops
is

Lij ¼
cij

I j
; (58)

where cij is the magnetic flux through loop i due to the current in loop j. It can be further written as

cij ¼
ð
Si

dSi � Bij ¼
1

ai

ð
ai

dai

ð
i
dli � Aij; (59)

where Si is the loop surface of loop i,Bij is the magnetic flux density,Aij is the magnetic vector potential at
loop i due to the current in loop j, and ai is the cross-section area of the loop iwire. The vector potentialAij

is formulated through an integral using the homogeneous medium Green’s function as its kernel:

Aij ¼
þ
loopj

dr0
e�jkjri�r0j

4pjri � r0j mJj r
0ð Þ: (60)

Assuming that the working frequency is low and cross sections of wires are always small, then the
current is almost uniform along the loop and at the cross section. Hence, one has

Aij ¼
m
4p

I j
aj

ð
aj

daj

þ
j
dlj

1

rij

� �
; (61)

where Ij is the loop j’s current from the common circuit point of view. Using Eqs. 58 and 59, one has

Lij ¼
1

aiaj

m
4p

þ
i

þ
j

ð
ai

ð
aj

dli � dljdaidaj
1

rij

� �
: (62)

If ai and aj are small (current filaments), it can be further simplified to be independent from the cross
section

Lij ¼
m
4p

þ
i

þ
j
dli � dlj

1

rij

� �
: (63)

If the wire cross section is not small, the wire has to be split along the longitudinal direction into many
current filaments. Each current filament is assumed to have a constant current at its cross section. Then
Eq. 63 depicts the result of a group of inductors connected in a parallel fashion.

With the thin- and short-wire assumption, if one divides each loop into small segments, the mutual
inductance is the summation of partial inductive contributions. For example, if loop i is partitioned into
K pieces while loop j is divided into M pieces, then
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