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Executive Summary

The research effort has produced a new high energy (750 kJ) electromagnetic launcher
(EML) facility at the University of Missouri-Columbia (MU). This new facility will be
used in the future to test prototype EML’s of all geometry types including rail,
augmented rail, and helical.

This research effort has also produced a new theoretical understanding of efficiency and
scaling for al types of constant gradient EML’s. EML efficiency is shown to be a simple
function of armature velocity and the launcher’s characteristic velocity. The concept of
an ideal EML is developed and defined by operation at 100% maximum efficiency at all
velocities. The concept of same-scale comparisons is developed and states that EML
comparisons should be done with equal bore diameter, launcher length, projectile mass,
and velocity. A comparative analysis using experimental data of same-scale constant
gradient EML’s is performed with conventional railgun, augmented railgun, and helical
gun launchers and is presented in terms of the launcher constant, inductance gradient,
bore diameter, bore length, system resistance, and armature (i.e., projectile) velocity.
General EML design guidelines are developed which emphasize the election of the EML
V-I operating point. The beneficial effect of super-cooling is demonstrated with liquid
nitrogen cooling and indicates super-cooled EML operation is desirable if cryo-cooling is
practical for the application.
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Experimental Arrangement and Procedure

The section below describes the experimental arrangement and procedure used in the
research. Two experimental pulse forming networks (PFN’s) are used with 125 kJ and
750 kJ total stired energy, respectively. Both PFN’s are modularized in construction to
accommodate a wide variety of load V-I characteristics.

A set of two high-speed framing camera is common to both experimental arrangements.
The first high-speed framing camera is an Imacon 200 from DRS Hadlund. This camera
is able to capture a total of 12 frames at up to 200,000,000 frames per second speeds and.
Expsoure times are variable down to a minimum of 5ns exposure time. The frames are
digital images with 1280 x 1024 resolution. The camera is an excellent addition to the
diagnostic capability of the laboratory. The second high-speed framing camera is the
Phantom v.7.1 from Vision Research. It uses a 12-bit 800 x 600 color CCD which can
record 4,800 uninterpolated frames per second at that resolution. The Phantom can
record a maximum of 150,000 fps at a lower spatial resolution. The on-board memeory




allows the camera to record up to 4 seconds of a particular event. The set of high-speed
cameras have been successfully used to diagnose several HCEL operational problems
that would have not been possible otherwise. For example, the armature coil housing was
mechanically stretched by the high-force launch causing a de-coupling of forces. We
were able to see verify this event with the high-speed camera.

125 kJ Modularized Pulsed Power Supply and Data Acquisition
System

The 125 kJ modularized pulsed power supply consists of 8 identical pulse-forming
networks (PFN’s) that are independently charged to various voltage levels and
sequentially fired into the helical coil electromagnetic launcher (i.e., HCEL). The HCEL
is a highly non-linear load due to resistance increases caused by joule heating in the
windings and due to terminal voltage increases caused by increases in the back-voltage.
The variable voltage level charging allows the current to be held at a constant level
despite these non-linear load changes. The modularized pulsed power supply has 125 kJ
total stored energy capability. We have successfully demonstrated the delivery of
relatively constant 15 kA pulses over 8 ms period. The concept can be used in other
applications where non-linear pulsed power loads are used. Table I lists the operating

TABLEI
125 kJ SFPFN OPERATING CHARACTERISTICS

Parameter Value
Voltage (max) 900V
Current (max) 50 kA
Equivalent capacitance 0308 F
Equivalent series inductance 1 uH
Equivalent series resistance ~ 1 mQ

characteristics of the 125 kJ sequentially-fired pulse forming network (SFPFN).

Fig 1 shows the 125 kJ SFPFN and its constituent parts connected to a 40 mm bore
HCEL. Fig 2 shows the computerized data acquisition system used in this facility.
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Fig 1. 125 kJ SFPEN connected to a 40 mm HCEL.
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Fig 2. Computerized data acquisition system and high-speed camera.




750 kJ Modularized Pulsed Power Supply and Data Acquisition
System

A new 750 kJ SFPFN was constructed during the course of this experiment consisting of
6 non-identical pulse-forming networks (PFN’s) that are independently charged to
various voltage levels and sequentially fired into the HCEL. The modularized pulsed
power supply has 750 kJ total stored energy capability. We have successfully test fired
the system verifying its operation and data acquisition systems but have used it with an
EML load. Table II lists the operating characteristics of the 125 kJ sequentially-fired
pulse forming network (SFPFN).

TABLEII
750 kJ SFPFN OPERATING CHARACTERISTICS

Parameter Value
Voltage (max) 3000V
Current (max) 500 kA
Equivalent capacitance N.A.
Equivalent series inductance 1 uH
Equivalent series resistance ~3 mQ

Fig 3 shows the 750 kJ SFPFN and its constituent parts. Fig 4 shows the various other
components associated with this facility.
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Fig 3. 750 kJ SFPEN and EML launcher platform.
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F1g 4. Other components associated with the 750 kJ SFPFN facility.

Helical Electromagnetic Launcher

Fig 5 shows the 40 mm bore HCEL used in the research while Fig 6 shows a close-up
view of the projectile. Sponsorship for construction of the HCEL was funded by another
contract [1]. Table III lists the physical dimensions of the HCEL. Later sections of this
report give more details of the HCEL and projectile.

TABLE III
CONSTRUCTION PARAMETERS OF THE 40 mm HCEL
Parameter Value
Length 0.75 m
Diameter 40 mm
Projectile mass 350t0 500 g
Projectile length 89 mm

Projectile O.D. 75 mm




