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Chapter 1

BASIC AC THEORY

1.1 What is alternating current (AC)?

Most students of electricity begin their study with what is known as direct current (DC), which is
electricity flowing in a constant direction, and/or possessing a voltage with constant polarity. DC
is the kind of electricity made by a battery (with definite positive and negative terminals), or the
kind of charge generated by rubbing certain types of materials against each other.

As useful and as easy to understand as DC is, it is not the only "kind” of electricity in use. Certain
sources of electricity (most notably, rotary electro-mechanical generators) naturally produce voltages
alternating in polarity, reversing positive and negative over time. FKEither as a voltage switching
polarity or as a current switching direction back and forth, this "kind” of electricity is known as
Alternating Current (AC):

DIRECT CURRENT ALTERNATING CURRENT
(DC) (AC)
- | - | --->
= O
| — -«--- | —

Whereas the familiar battery symbol is used as a generic symbol for any DC voltage source, the
circuit with the wavy line inside is the generic symbol for any AC voltage source.

One might wonder why anyone would bother with such a thing as AC. It is true that in some
cases AC holds no practical advantage over DC. In applications where electricity is used to dissipate
energy in the form of heat, the polarity or direction of current is irrelevant, so long as there is
enough voltage and current to the load to produce the desired heat (power dissipation). However,
with AC it is possible to build electric generators, motors and power distribution systems that are
far more efficient than DC, and so we find AC used predominately across the world in high power
applications. To explain the details of why this is so, a bit of background knowledge about AC is

1



2 CHAPTER 1. BASIC AC THEORY

necessary.

If a machine is constructed to rotate a magnetic field around a set of stationary wire coils with
the turning of a shaft, AC voltage will be produced across the wire coils as that shaft is rotated, in
accordance with Faraday’s Law of electromagnetic induction. This is the basic operating principle
of an AC generator, also known as an alternator:

Alternator operation

Step #1 Step #2

b

no current!

VA VW
Load Load
Step #3

(b

no current!

VA VA
Load Load

Notice how the polarity of the voltage across the wire coils reverses as the opposite poles of the
rotating magnet pass by. Connected to a load, this reversing voltage polarity will create a reversing
current direction in the circuit. The faster the alternator’s shaft is turned, the faster the magnet
will spin, resulting in an alternating voltage and current that switches directions more often in a
given amount of time.

While DC generators work on the same general principle of electromagnetic induction, their
construction is not as simple as their AC counterparts. With a DC generator, the coil of wire is
mounted in the shaft where the magnet is on the AC alternator, and electrical connections are
made to this spinning coil via stationary carbon ”brushes” contacting copper strips on the rotating
shaft. All this is necessary to switch the coil’s changing output polarity to the external circuit so
the external circuit sees a constant polarity:
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(DC) Generator operation

vs(( &) Isn]
e

VWA
Load

(ep #3)
e

VWA VWA
Load Load

The generator shown above will produce two pulses of voltage per revolution of the shaft, both
pulses in the same direction (polarity). In order for a DC generator to produce constant voltage,
rather than brief pulses of voltage once every 1/2 revolution, there are multiple sets of coils making
intermittent contact with the brushes. The diagram shown above is a bit more simplified than what
you would see in real life.

The problems involved with making and breaking electrical contact with a moving coil should
be obvious (sparking and heat), especially if the shaft of the generator is revolving at high speed.
If the atmosphere surrounding the machine contains flammable or explosive vapors, the practical
problems of spark-producing brush contacts are even greater. An AC generator (alternator) does
not require brushes and commutators to work, and so is immune to these problems experienced by
DC generators.

The benefits of AC over DC with regard to generator design is also reflected in electric motors.
While DC motors require the use of brushes to make electrical contact with moving coils of wire, AC
motors do not. In fact, AC and DC motor designs are very similar to their generator counterparts
(identical for the sake of this tutorial), the AC motor being dependent upon the reversing magnetic
field produced by alternating current through its stationary coils of wire to rotate the rotating
magnet around on its shaft, and the DC motor being dependent on the brush contacts making and
breaking connections to reverse current through the rotating coil every 1/2 rotation (180 degrees).

So we know that AC generators and AC motors tend to be simpler than DC generators and DC
motors. This relative simplicity translates into greater reliability and lower cost of manufacture.
But what else is AC good for? Surely there must be more to it than design details of generators and
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motors! Indeed there is. There is an effect of electromagnetism known as mutual induction, whereby
two or more coils of wire placed so that the changing magnetic field created by one induces a voltage
in the other. If we have two mutually inductive coils and we energize one coil with AC, we will
create an AC voltage in the other coil. When used as such, this device is known as a transformer:

Transformer
AC
voltage (" H Induced AC
souré?’e > voltage

The fundamental significance of a transformer is its ability to step voltage up or down from the
powered coil to the unpowered coil. The AC voltage induced in the unpowered (”secondary”) coil
is equal to the AC voltage across the powered ("primary”) coil multiplied by the ratio of secondary
coil turns to primary coil turns. If the secondary coil is powering a load, the current through
the secondary coil is just the opposite: primary coil current multiplied by the ratio of primary to
secondary turns. This relationship has a very close mechanical analogy, using torque and speed to
represent voltage and current, respectively:

Speed multiplication geartrain

Large gear
(many teeth)
Small gear
(few teeth)
high torque low torque
low speed high speed

"Step-down" transformer

high voltage

low voltage

AC voltage
g C/\D many = few turns Load

source turns

high current

low current

If the winding ratio is reversed so that the primary coil has less turns than the secondary coil,
the transformer ”steps up” the voltage from the source level to a higher level at the load:
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Speed reduction geartrain

Large gear
(many teeth)

Small gear
(few teeth)

high torque

low torque
low speed

high speed

"Step-up" transformer

high voltage

AC voltage

source many turns % Load

low current

The transformer’s ability to step AC voltage up or down with ease gives AC an advantage
unmatched by DC in the realm of power distribution. When transmitting electrical power over
long distances, it is far more efficient to do so with stepped-up voltages and stepped-down currents
(smaller-diameter wire with less resistive power losses), then step the voltage back down and the
current back up for industry, business, or consumer use use.

high voltage
Power Plant \ . }
Step-up T
H ... to other customers
low voltage

Step-down ——

Home or
Business low voltage
Transformer technology has made long-range electric power distribution practical. Without the
ability to efficiently step voltage up and down, it would be cost-prohibitive to construct power
systems for anything but close-range (within a few miles at most) use.
As useful as transformers are, they only work with AC, not DC. Because the phenomenon of
mutual inductance relies on changing magnetic fields, and direct current (DC) can only produce
steady magnetic fields, transformers simply will not work with direct current. Of course, direct
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current may be interrupted (pulsed) through the primary winding of a transformer to create a
changing magnetic field (as is done in automotive ignition systems to produce high-voltage spark
plug power from a low-voltage DC battery), but pulsed DC is not that different from AC. Perhaps
more than any other reason, this is why AC finds such widespread application in power systems.

e REVIEW:

e DC stands for ”Direct Current,” meaning voltage or current that maintains constant polarity
or direction, respectively, over time.

e AC stands for ” Alternating Current,” meaning voltage or current that changes polarity or
direction, respectively, over time.

e AC electromechanical generators, known as alternators, are of simpler construction than DC
electromechanical generators.

e AC and DC motor design follows respective generator design principles very closely.

e A transformer is a pair of mutually-inductive coils used to convey AC power from one coil to
the other. Often, the number of turns in each coil is set to create a voltage increase or decrease
from the powered (primary) coil to the unpowered (secondary) coil.

e Secondary voltage = Primary voltage (secondary turns / primary turns)

e Secondary current = Primary current (primary turns / secondary turns)

1.2 AC waveforms

When an alternator produces AC voltage, the voltage switches polarity over time, but does so in a
very particular manner. When graphed over time, the ”wave” traced by this voltage of alternating
polarity from an alternator takes on a distinct shape, known as a sine wave:

Graph of AC voltage over time
(the sine wave)

Time —

In the voltage plot from an electromechanical alternator, the change from one polarity to the
other is a smooth one, the voltage level changing most rapidly at the zero (”crossover”) point and
most slowly at its peak. If we were to graph the trigonometric function of ”sine” over a horizontal
range of 0 to 360 degrees, we would find the exact same pattern:
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Angle Sine(angle)

in degrees

0 i, 0.0000 -- zero
156 ..ol 0.2588

30 o 0.5000

45 . 0.7071

60 ..o, 0.8660

75 i 0.9659

90 ...l 1.0000 -- positive peak
106 ...l 0.9659

120 ..ol 0.8660

135 ..l 0.7071

150 ...l 0.5000

165 ... ... ... 0.2588

180 ..ot 0.0000 -- zero
1956 ...l -0.2588

210 o, -0.5000

225 ..ol -0.7071

240 ..o, -0.8660

2556 L.l -0.9659

270 .o -1.0000 -- negative peak
285 ...l -0.9659

300 ...l -0.8660

315 ... -0.7071

330 .. -0.5000

345 ...l -0.2588

360 ...l 0.0000 -- zero

The reason why an electromechanical alternator outputs sine-wave AC is due to the physics of
its operation. The voltage produced by the stationary coils by the motion of the rotating magnet is
proportional to the rate at which the magnetic flux is changing perpendicular to the coils (Faraday’s
Law of Electromagnetic Induction). That rate is greatest when the magnet poles are closest to the
coils, and least when the magnet poles are furthest away from the coils. Mathematically, the rate
of magnetic flux change due to a rotating magnet follows that of a sine function, so the voltage
produced by the coils follows that same function.

If we were to follow the changing voltage produced by a coil in an alternator from any point
on the sine wave graph to that point when the wave shape begins to repeat itself, we would have
marked exactly one cycle of that wave. This is most easily shown by spanning the distance between
identical peaks, but can be measured between any corresponding points on the graph. The degree
marks on the horizontal axis of the graph represent the domain of the trigonometric sine function,
and also the angular position of our simple two-pole alternator shaft as it rotates:
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|«<— one wave cycle —»|

Alternator shaft —
position (degrees)

Since the horizontal axis of this graph can mark the passage of time as well as shaft position in
degrees, the dimension marked for one cycle can be measured in a unit of time, most often seconds
or fractions of a second. When expressed as a measurement, this is often called the period of a wave.
The period of a wave in degrees is always 360, but the amount of time one period occupies depends
on the rate voltage is alternating back and forth.

A more popular measure for describing the alternating rate of an AC voltage or current wave
than period is the speed of that back-and-forth alternation. This is called frequency. The modern
unit for frequency is the Hertz (abbreviated Hz), which is equal to one wave cycle per second of
time. Prior to the canonization of the Hertz unit, frequency was simply expressed as ”cycles per
second.” Older meters and electronic equipment often bore frequency units of ”CPS” (Cycles Per
Second) instead of Hz.

Period and frequency are mathematical reciprocals of one another. That is to say, if a wave has
a period of 10 seconds, its frequency will be 0.1 Hz, or 1/10 a cycle per second:

1

Frequency in Hertz = —
Period in seconds

An instrument called an oscilloscope is expressly designed to display a changing voltage over time
on a graphical screen. The relationship between period and frequency is very useful to know when
displaying an AC voltage or current waveform on an oscilloscope screen. By measuring the period
of the wave on the horizontal axis of the oscilloscope screen and reciprocating that time value (in
seconds), you can determine the frequency in Hertz.

Voltage and current are by no means the only physical variables subject to variation over time.
Much more common to our everyday experience is sound, which is nothing more than the alternating
compression and decompression (pressure waves) of air molecules, interpreted by our ears as a phys-
ical sensation. Because alternating current is a wave phenomenon, it shares many of the properties
of other wave phenomena, like sound. For this reason, sound (especially structured music) provides
an excellent analogy for relating AC concepts.

In musical terms, frequency is equivalent to pitch. Low-pitch notes such as those produced by
a tuba or bassoon consist of air molecule vibrations that are relatively slow (low frequency). High-
pitch notes such as those produced by a flute or whistle consist of the same type of vibrations in
the air, only vibrating at a much faster rate (higher frequency). Here is a table showing the actual
frequencies for a range of common musical notes:



1.2. AC WAVEFORMS 9

Note Musical designation Frequency (in hertz)
A A 220.00
A sharp (or B flat) A" or B° 233.08
B B, 246.94
C (middle) C 261.63
C sharp (or D flat) c*orDP 277.18
D D 293.66
D sharp (or E flat) D* or E® 311.13
E E 329.63
F F 349.23
F sharp (or G flat) F* or G° 369.99
G G 392.00
G sharp (or A flat) G" or A° 415.30
A A 440.00
A sharp (or B flat) A* or B 466.16
B B 493.88
C ct 523.25

Astute observers will notice that all notes on the table bearing the same letter designation are
related by a frequency ratio of 2:1. For example, the first frequency shown (designated with the
letter ”A”) is 220 Hz. The next highest ” A” note has a frequency of 440 Hz — exactly twice as many
sound wave cycles per second. The same 2:1 ratio holds true for the first A sharp (233.08 Hz) and
the next A sharp (466.16 Hz), and for all note pairs found in the table.

Audibly, two notes whose frequencies are exactly double each other sound remarkably similar.
This similarity in sound is musically recognized, the shortest span on a musical scale separating such
note pairs being called an octave. Following this rule, the next highest ” A” note (one octave above
440 Hz) will be 880 Hz, the next lowest ”A” (one octave below 220 Hz) will be 110 Hz. A view of a
piano keyboard helps to put this scale into perspective:

C# D# F# G# A# C# D# F# G# A# C# D# F# G# A#
Db Eb Gb Ab Bb Db Eb Gb Ab Bb Db Eb b

CDEFGABCDEFGABCDETFGATB

l«— One octave —

As you can see, one octave is equal to eight white keys’ worth of distance on a piano keyboard. The
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familiar musical mnemonic (doe-ray-mee-fah-so-lah-tee-doe) — yes, the same pattern immortalized
in the whimsical Rodgers and Hammerstein song sung in ” The Sound of Music” — covers one octave
from C to C.

While electromechanical alternators and many other physical phenomena naturally produce sine
waves, this is not the only kind of alternating wave in existence. Other ”"waveforms” of AC are
commonly produced within electronic circuitry. Here are but a few sample waveforms and their
common designations:

Square wave Triangle wave
[<— one wave cycle —i [<— one wave cycle —l

Sawtooth wave

ad

These waveforms are by no means the only kinds of waveforms in existence. They’re simply a
few that are common enough to have been given distinct names. Even in circuits that are supposed
to manifest ”pure” sine, square, triangle, or sawtooth voltage/current waveforms, the real-life result
is often a distorted version of the intended waveshape. Some waveforms are so complex that they
defy classification as a particular "type” (including waveforms associated with many kinds of musical
instruments). Generally speaking, any waveshape bearing close resemblance to a perfect sine wave
is termed sinusoidal, anything different being labeled as non-sinusoidal. Being that the waveform of
an AC voltage or current is crucial to its impact in a circuit, we need to be aware of the fact that
AC waves come in a variety of shapes.

¢ REVIEW:
e AC produced by an electromechanical alternator follows the graphical shape of a sine wave.

e One cycle of a wave is one complete evolution of its shape until the point that it is ready to
repeat itself.

e The period of a wave is the amount of time it takes to complete one cycle.

e Frequency is the number of complete cycles that a wave completes in a given amount of time.
Usually measured in Hertz (Hz), 1 Hz being equal to one complete wave cycle per second.

e Frequency = 1/(period in seconds)
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1.3 Measurements of AC magnitude

So far we know that AC voltage alternates in polarity and AC current alternates in direction. We
also know that AC can alternate in a variety of different ways, and by tracing the alternation over
time we can plot it as a ”waveform.” We can measure the rate of alternation by measuring the time
it takes for a wave to evolve before it repeats itself (the ”period”), and express this as cycles per
unit time, or ”frequency.” In music, frequency is the same as pitch, which is the essential property
distinguishing one note from another.

However, we encounter a measurement problem if we try to express how large or small an AC
quantity is. With DC, where quantities of voltage and current are generally stable, we have little
trouble expressing how much voltage or current we have in any part of a circuit. But how do you
grant a single measurement of magnitude to something that is constantly changing?

One way to express the magnitude (or amplitude) of an AC quantity is to measure its peak height
on a waveform graph. This is known as the peak or crest value of an AC waveform:

Peak

Time —

Another way is to measure the total height between opposite peaks. This is known as the
peak-to-peak (P-P) value of an AC waveform:

Peak-to-Peak

!

Time —

Unfortunately, either one of these expressions of waveform amplitude can be misleading when
comparing two different types of waves. For example, a square wave peaking at 10 volts is obviously
a greater amount of voltage for a greater amount of time than a triangle wave peaking at 10 volts.
The effects of these two AC voltages powering a load would be quite different:
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10V
(peak)

more heat ener
% dissipated &

(same load resistance)

10V
(peak)

_% less heat energy
/’

dissipated

One way of expressing the amplitude of different waveshapes in a more equivalent fashion is to
mathematically average the values of all the positive or negative points on a waveform’s graph to
a single, aggregate number. This amplitude measure, simply known as the average, is the value
naturally indicated by an electromechanical meter movement, due to the averaging effect of the
needle’s inertia. The best way to express the amplitudes of AC waveforms equivalently, however, is
to rate them in terms of their ability to perform useful work, and the mathematical average of an
AC waveform doesn’t represent that.

Anyone familiar with modern woodworking equipment knows what a bandsaw and a jigsaw are.
Both types of saws cut with a thin, toothed, motor-powered metal blade to cut wood. But while the
bandsaw uses a continuous motion of the blade to cut, the jigsaw uses a back-and-forth motion. The
comparison of alternating current (AC) to direct current (DC) can be likened to the comparison of

these two saw types:
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Bandsaw
Jigsaw

T E

blade
motlonl

wood bein
cut |

blade
motion

QMO

(analogous to DC) (analogous to AC)

The problem of trying to describe the changing quantities of AC voltage or current in a single
measurement is also present in this saw analogy: how might we express the speed of a jigsaw blade?
A bandsaw blade moves with a constant speed, similar to the way DC voltage pushes or DC current
moves with a constant magnitude. A jigsaw blade, on the other hand, moves back and forth, its
blade speed constantly changing. What is more, the back-and-forth motion of any two jigsaws may
not be of the same type, depending on the mechanical design of the saws. One jigsaw might move its
blade with a sine-wave motion, while another with a triangle-wave motion. To rate a jigsaw based
on its peak blade speed would be quite misleading when comparing one saw to another (or a jigsaw
with a bandsaw!). Despite the fact that these different saws move their blades in different manners,
they are equal in one respect: they all cut wood, and a measurement of this equal function can serve
as a common basis for which to rate blade speed.

Picture a jigsaw and bandsaw side-by-side, equipped with identical blades (same tooth pitch,
angle, etc.), equally capable of cutting the same thickness of the same type of wood at the same
rate. We might say that the two saws were equivalent or equal in their cutting capacity. Might this
comparison be used to assign a ”"bandsaw equivalent” blade speed to the jigsaw’s back-and-forth
blade motion; to relate the wood-cutting effectiveness of one to the other? This is the general idea
used to assign a "DC equivalent” measurement to any AC voltage or current: whatever magnitude
of DC voltage or current would produce the same amount of heat energy dissipation through an
equal resistance:
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~<~— 5A RMS --->

/ 50w
ower
10V 20 2ZF gi8Spated

RMS
N

Equal power dissipated through
equal resistance loads
<« 5A /

50 W
ower
oV — 2Q % digsipated

;

In the two circuits above, we have the same amount of load resistance (2 ) dissipating the same
amount of power in the form of heat (50 watts), one powered by AC and the other by DC. Because
the AC voltage source pictured above is equivalent (in terms of power delivered to a load) to a 10
volt DC battery, we would call this a 710 volt” AC source. More specifically, we would denote its
voltage value as being 10 volts RMS. The qualifier "RMS” stands for Root Mean Square, which is the
mathematical method of deriving the DC equivalent value from points on a graph (essentially, this
method consists of squaring all the positive and negative points on a waveform graph, averaging those
squared values, then taking the square root of that average to obtain the final answer). Sometimes
the alternative terms equivalent or DC' equivalent are used instead of "RMS,” but the idea is the
same.

~-- 5A RMS —=

5A—

RMS amplitude measurement is the best way to relate AC quantities to DC quantities, or other
AC quantities of differing waveform shapes, when dealing with measurements of electric power. For
other considerations, peak or peak-to-peak measurements may be the best to employ. For instance,
when determining the proper size of wire (ampacity) to conduct electric power from a source to
a load, RMS current measurement is the best to use, because the principal concern with current
is overheating of the wire, which is a function of power dissipation caused by current through the
resistance of the wire. However, when rating insulators for service in high-voltage AC applications,
peak voltage measurements are the most appropriate, because the principal concern here is insulator
”flashover” caused by brief spikes of voltage, irrespective of time.

Peak and peak-to-peak measurements are best performed with an oscilloscope, which can capture
the crests of the waveform with a high degree of accuracy due to the fast action of the cathode-
ray-tube in response to changes in voltage. For RMS measurements, analog meter movements
(D’Arsonval, Weston, iron vane, electrodynamometer) will work so long as they have been calibrated
in RMS figures. Remember that analog meter movements naturally indicate the average value
of a voltage or a current. A calibration factor for RMS assumes a particular waveshape where
the relationship between average and RMS is known. Electronic meters specifically designed for
RMS measurement are best for the task. Some instrument manufacturers have designed ingenious
methods for determining the RMS value of any waveform. One such manufacturer produces ” True-
RMS” meters with a tiny resistive heating element powered by a voltage proportional to that being
measured. The heating effect of that resistance element is measured thermally to give a true RMS
value with no mathematical calculations whatsoever, just the laws of physics in action in fulfillment
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of the definition of RMS.
For ”pure” waveforms, simple conversion coefficients can be calculated which equate Peak, Peak-
to-Peak, Average, and RMS measurements.

RMS = 0.707 (Peak)
AVG = 0.637 (Peak)
P-P =2 (Peak)

RMS = Peak
AVG = Peak
P-P =2 (Peak)

RMS = 0.577 (Peak)
AVG = 0.5 (Peak)
P-P =2 (Peak)

Bear in mind that the conversion constants shown above for RMS and average measurements
hold true only for pure waveshapes. The RMS and average values of distorted waveshapes are not
related by the same multiplier values:

RMS = 2?72
AVG = ?7??
P-P = 2 (Peak)

This is a very important concept to understand when using an analog meter movement to measure
AC voltage or current. An analog movement, calibrated to indicate RMS, will only be accurate when
measuring pure sine waves. If the waveform of the voltage or current being measured is anything but
a pure sine wave, the indication given by the meter will not be the true RMS value of the waveform.
The amount of needle deflection in an analog meter movement is proportional to the average value
of the waveform, not the RMS. RMS meter calibration is obtained by ”skewing” the span of the
meter so that it displays a fixed proportion of the average value known to be the RMS value for
o particular waveshape. Since the sine-wave shape is most common in electrical measurements, it
is the waveshape assumed for analog meter calibration. Any other waveshape will have a different
proportion between its average and RMS values, and so a meter calibrated for sine-wave voltage or
current will not indicate true RMS when reading a non-sinusoidal wave.
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e REVIEW:

e The amplitude of an AC waveform is its height as depicted on a graph over time. An amplitude
measurement can take the form of peak, peak-to-peak, average, or RMS quantity.

e Peak amplitude is the height of an AC waveform as measured from the zero mark to the highest
positive or lowest negative point on a graph. Also known as the crest amplitude of a wave.

e Peak-to-peak amplitude is the total height of an AC waveform as measured from maximum
positive to maximum negative peaks on a graph. Often abbreviated as "P-P”.

e Awverage amplitude is the mathematical "mean” of all positive or all negative points on a
waveform graph.

e "RMS” stands for Root Mean Square, and is a way of expressing an AC quantity of voltage or
current in terms functionally equivalent to DC. For example, 10 volts AC RMS is the amount
of voltage that would produce the same amount of heat dissipation across a resistor of given
value as a 10 volt DC power supply. Also known as the ”equivalent” or "DC equivalent” value
of an AC voltage or current.

1.4 Simple AC circuit calculations

Over the course of the next few chapters, you will learn that AC circuit measurements and calcu-
lations can get very complicated due to the complex nature of alternating current in circuits with
inductance and capacitance. However, with simple circuits involving nothing more than an AC
power source and resistance, the same laws and rules of DC apply simply and directly.

10v (\) R%SOOQ

400 Q
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Rioa =R1 + Ry + Ry

_ E’[otal

I total —

Rtotal
_10V
total 1 kQ
liota = 10 MA
Eri = lioaPu Erz = lioaR2 Ers = lioaRs
Eri=1V Er, =5V Ers =4V

Series resistances still add, parallel resistances still diminish, and the Laws of Kirchhoff and
Ohm still hold true. Actually, as we will discover later on, these rules and laws always hold true, it’s
just that we have to express the quantities of voltage, current, and opposition to current in more
advanced mathematical forms. With purely resistive circuits, however, these complexities of AC are
of no practical consequence, and so we can treat the numbers as though we were dealing with simple
DC quantities.

Because all these mathematical relationships still hold true, we can make use of our familiar
”table” method of organizing circuit values just as with DC:

R; R, R, Total
E 1 5 4 10 Volts
I 10m 10m 10m 10m Amps
R 100 500 400 1k Ohms

One major caveat needs to be given here: all measurements of AC voltage and current must be
expressed in the same terms (peak, peak-to-peak, average, or RMS). If the source voltage is given in
peak AC volts, then all currents and voltages subsequently calculated are cast in terms of peak units.
If the source voltage is given in AC RMS volts, then all calculated currents and voltages are cast in
AC RMS units as well. This holds true for any calculation based on Ohm’s Laws, Kirchhoff’s Laws,
etc. Unless otherwise stated, all values of voltage and current in AC circuits are generally assumed to
be RMS rather than peak, average, or peak-to-peak. In some areas of electronics, peak measurements
are assumed, but in most applications (especially industrial electronics) the assumption is RMS.

e REVIEW:
e All the old rules and laws of DC (Kirchhoff’s Voltage and Current Laws, Ohm’s Law) still hold
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true for AC. However, with more complex circuits, we may need to represent the AC quantities
in more complex form. More on this later, I promise!

e The ”table” method of organizing circuit values is still a valid analysis tool for AC circuits.

1.5 AC phase

Things start to get complicated when we need to relate two or more AC voltages or currents that are
out of step with each other. By ”out of step,” I mean that the two waveforms are not synchronized:
that their peaks and zero points do not match up at the same points in time. The following graph
illustrates an example of this:

A B A B
A B
A B
A B A B

The two waves shown above (A versus B) are of the same amplitude and frequency, but they
are out of step with each other. In technical terms, this is called a phase shift. Earlier we saw
how we could plot a ”sine wave” by calculating the trigonometric sine function for angles ranging
from 0 to 360 degrees, a full circle. The starting point of a sine wave was zero amplitude at zero
degrees, progressing to full positive amplitude at 90 degrees, zero at 180 degrees, full negative at 270
degrees, and back to the starting point of zero at 360 degrees. We can use this angle scale along the
horizontal axis of our waveform plot to express just how far out of step one wave is with another:

degrees

©) ©)
A0 9 180 270 360 90 180 270 360

| | | | | | | | |
A%
| | | | | | | | |
B 0 20 180 270 360 20 180 270 360
0) 0)

degrees

The shift between these two waveforms is about 45 degrees, the ”A” wave being ahead of the
”"B” wave. A sampling of different phase shifts is given in the following graphs to better illustrate
this concept:
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Phase shift = 90 degrees
A B8 Ais ahead of B
(A "leads" B)

Phase shift = 90 degrees
B is ahead of A

B A
(B "leads" A)

A .
Phase shift = 180 degrees
A and B waveforms are

5 mirror-images of each other
Phase shift = 0 degrees

A'B A and B waveforms are

in perfect step with each other

Because the waveforms in the above examples are at the same frequency, they will be out of step
by the same angular amount at every point in time. For this reason, we can express phase shift for
two or more waveforms of the same frequency as a constant quantity for the entire wave, and not
just an expression of shift between any two particular points along the waves. That is, it is safe to
say something like, ”voltage A’ is 45 degrees out of phase with voltage 'B’.” Whichever waveform
is ahead in its evolution is said to be leading and the one behind is said to be lagging.

Phase shift, like voltage, is always a measurement relative between two things. There’s really no
such thing as a waveform with an absolute phase measurement because there’s no known universal
reference for phase. Typically in the analysis of AC circuits, the voltage waveform of the power
supply is used as a reference for phase, that voltage stated as "xxx volts at 0 degrees.” Any other
AC voltage or current in that circuit will have its phase shift expressed in terms relative to that
source voltage.

This is what makes AC circuit calculations more complicated than DC. When applying Ohm’s
Law and Kirchhoff’s Laws, quantities of AC voltage and current must reflect phase shift as well
as amplitude. Mathematical operations of addition, subtraction, multiplication, and division must
operate on these quantities of phase shift as well as amplitude. Fortunately, there is a mathematical
system of quantities called complexr numbers ideally suited for this task of representing amplitude
and phase.

Because the subject of complex numbers is so essential to the understanding of AC circuits, the
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next chapter will be devoted to that subject alone.

¢ REVIEW:
o Phase shift is where two or more waveforms are out of step with each other.

e The amount of phase shift between two waves can be expressed in terms of degrees, as de-
fined by the degree units on the horizontal axis of the waveform graph used in plotting the
trigonometric sine function.

e A leading waveform is defined as one waveform that is ahead of another in its evolution. A
lagging waveform is one that is behind another. Example:

Phase shift = 90 degrees
A B Aleads B; B lags A

e Calculations for AC circuit analysis must take into consideration both amplitude and phase
shift of voltage and current waveforms to be completely accurate. This requires the use of a
mathematical system called complex numbers.

1.6 Principles of radio

One of the more fascinating applications of electricity is in the generation of invisible ripples of
energy called radio waves. The limited scope of this lesson on alternating current does not permit
full exploration of the concept, some of the basic principles will be covered.

With Oersted’s accidental discovery of electromagnetism, it was realized that electricity and
magnetism were related to each other. When an electric current was passed through a conductor, a
magnetic field was generated perpendicular to the axis of flow. Likewise, if a conductor was exposed
to a change in magnetic flux perpendicular to the conductor, a voltage was produced along the
length of that conductor. So far, scientists knew that electricity and magnetism always seemed to
affect each other at right angles. However, a major discovery lay hidden just beneath this seemingly
simple concept of related perpendicularity, and its unveiling was one of the pivotal moments in
modern science.

This breakthrough in physics is hard to overstate. The man responsible for this conceptual
revolution was the Scottish physicist James Clerk Maxwell (1831-1879), who ”unified” the study of
electricity and magnetism in four relatively tidy equations. In essence, what he discovered was that
electric and magnetic fields were intrinsically related to one another, with or without the presence
of a conductive path for electrons to flow. Stated more formally, Maxwell’s discovery was this:

A changing electric field produces a perpendicular magnetic field, and

A changing magnetic field produces a perpendicular electric field.

All of this can take place in open space, the alternating electric and magnetic fields supporting
each other as they travel through space at the speed of light. This dynamic structure of electric and
magnetic fields propagating through space is better known as an electromagnetic wave.
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There are many kinds of natural radiative energy composed of electromagnetic waves. Even
light is electromagnetic in nature. So are X-rays and ”"gamma” ray radiation. The only difference
between these kinds of electromagnetic radiation is the frequency of their oscillation (alternation of
the electric and magnetic fields back and forth in polarity). By using a source of AC voltage and a
special device called an antenna, we can create electromagnetic waves (of a much lower frequency
than that of light) with ease.

An antenna, is nothing more than a device built to produce a dispersing electric or magnetic field.
Two fundamental types of antennae are the dipole and the loop:

Basic antenna designs

DIPOLE LoopP
")
I\
")
I\

While the dipole looks like nothing more than an open circuit, and the loop a short circuit,
these pieces of wire are effective radiators of electromagnetic fields when connected to AC sources
of the proper frequency. The two open wires of the dipole act as a sort of capacitor (two conductors
separated by a dielectric), with the electric field open to dispersal instead of being concentrated
between two closely-spaced plates. The closed wire path of the loop antenna acts like an inductor
with a large air core, again providing ample opportunity for the field to disperse away from the
antenna instead of being concentrated and contained as in a normal inductor.

As the powered dipole radiates its changing electric field into space, a changing magnetic field
is produced at right angles, thus sustaining the electric field further into space, and so on as the
wave propagates at the speed of light. As the powered loop antenna radiates its changing magnetic
field into space, a changing electric field is produced at right angles, with the same end-result of
a continuous electromagnetic wave sent away from the antenna. Either antenna achieves the same
basic task: the controlled production of an electromagnetic field.

When attached to a source of high-frequency AC power, an antenna acts as a transmitting device,
converting AC voltage and current into electromagnetic wave energy. Antennas also have the ability
to intercept electromagnetic waves and convert their energy into AC voltage and current. In this
mode, an antenna acts as a receiving device:
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z \ AC current
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Radio transmitters

While there is much more that can be said about antenna technology, this brief introduction is
enough to give you the general idea of what’s going on (and perhaps enough information to provoke
a few experiments).

REVIEW:

James Maxwell discovered that changing electric fields produce perpendicular magnetic fields,
and visa-versa, even in empty space.

A twin set of electric and magnetic fields, oscillating at right angles to each other and traveling
at the speed of light, constitutes an electromagnetic wave.

An antenna is a device made of wire, designed to radiate a changing electric field or changing
magnetic field when powered by a high-frequency AC source, or intercept an electromagnetic
field and convert it to an AC voltage or current.

The dipole antenna consists of two pieces of wire (not touching), primarily generating an
electric field when energized, and secondarily producing a magnetic field in space.

The loop antenna consists of a loop of wire, primarily generating a magnetic field when ener-
gized, and secondarily producing an electric field in space.



Chapter 2

COMPLEX NUMBERS

2.1 Introduction

If I needed to describe the distance between two cities, I could provide an answer consisting of a
single number in miles, kilometers, or some other unit of linear measurement. However, if I were to
describe how to travel from one city to another, I would have to provide more information than just
the distance between those two cities; I would also have to provide information about the direction
to travel, as well.

The kind of information that expresses a single dimension, such as linear distance, is called a
scalar quantity in mathematics. Scalar numbers are the kind of numbers you’ve used in most all of
your mathematical applications so far. The voltage produced by a battery, for example, is a scalar
quantity. So is the resistance of a piece of wire (ohms), or the current through it (amps).

However, when we begin to analyze alternating current circuits, we find that quantities of voltage,
current, and even resistance (called impedance in AC) are not the familiar one-dimensional quan-
tities we’re used to measuring in DC circuits. Rather, these quantities, because they’re dynamic
(alternating in direction and amplitude), possess other dimensions that must be taken into account.
Frequency and phase shift are two of these dimensions that come into play. Even with relatively
simple AC circuits, where we’re only dealing with a single frequency, we still have the dimension of
phase shift to contend with in addition to the amplitude.

In order to successfully analyze AC circuits, we need to work with mathematical objects and
techniques capable of representing these multi-dimensional quantities. Here is where we need to
abandon scalar numbers for something better suited: complex numbers. Just like the example of
giving directions from one city to another, AC quantities in a single-frequency circuit have both
amplitude (analogy: distance) and phase shift (analogy: direction). A complex number is a single
mathematical quantity able to express these two dimensions of amplitude and phase shift at once.

Complex numbers are easier to grasp when they’re represented graphically. If I draw a line with
a certain length (magnitude) and angle (direction), I have a graphic representation of a complex
number which is commonly known in physics as a vector:

23
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-4 B
length=7 length = 10
angle = 0 degrees angle = 180 degrees
length =5 length = 4
angle = 90 degrees angle = 270 degrees
(-90 degrees)
length = 9.43
length = 5.66 angle = 302.01 degrees
angle = 45 degrees (-57.99 degrees)

Like distances and directions on a map, there must be some common frame of reference for angle
figures to have any meaning. In this case, directly right is considered to be 0°, and angles are counted
in a positive direction going counter-clockwise:

The vector "compass”

90°

180° Q°

270°
(-90%)
The idea of representing a number in graphical form is nothing new. We all learned this in grade
school with the "number line:”

| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

We even learned how addition and subtraction works by seeing how lengths (magnitudes) stacked
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up to give a final answer:

5+3=8

8 >
5 >t 3 —

| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Later, we learned that there were ways to designate the values between the whole numbers marked
on the line. These were fractional or decimal quantities:

X T

3-1/2 or 3.5

| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Later yet we learned that the number line could extend to the left of zero as well:

I I I I I I I I I I I
5 4 3 -2 -1 0 1 2 3 4 5

These fields of numbers (whole, integer, rational, irrational, real, etc.) learned in grade school
share a common trait: they’re all one-dimensional. The straightness of the number line illustrates
this graphically. You can move up or down the number line, but all "motion” along that line is
restricted to a single axis (horizontal). One-dimensional, scalar numbers are perfectly adequate
for counting beads, representing weight, or measuring DC battery voltage, but they fall short of
being able to represent something more complex like the distance and direction between two cities,
or the amplitude and phase of an AC waveform. To represent these kinds of quantities, we need
multidimensional representations. In other words, we need a number line that can point in different
directions, and that’s exactly what a vector is.

e REVIEW:

e A scalar number is the type of mathematical object that people are used to using in everyday
life: a one-dimensional quantity like temperature, length, weight, etc.

o A complex number is a mathematical quantity representing two dimensions of magnitude and
direction.

e A wector is a graphical representation of a complex number. It looks like an arrow, with a
starting point, a tip, a definite length, and a definite direction. Sometimes the word phasor
is used in electrical applications where the angle of the vector represents phase shift between
waveforms.
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2.2 Vectors and AC waveforms

Okay, so how exactly can we represent AC quantities of voltage or current in the form of a vector?
The length of the vector represents the magnitude (or amplitude) of the waveform, like this:

Waveform Vector representation

/\/ .

Am_pT;,lde |<— Length —’|

The greater the amplitude of the waveform, the greater the length of its corresponding vector.
The angle of the vector, however, represents the phase shift in degrees between the waveform in
question and another waveform acting as a ”"reference” in time. Usually, when the phase of a
waveform in a circuit is expressed, it is referenced to the power supply voltage waveform (arbitrarily
stated to be ”at” 0°). Remember that phase is always a relative measurement between two waveforms
rather than an absolute property.
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Waveforms Phase relations Vector representations

(of "A" waveform with
reference to "B" waveform)

Phase shift = 0 degrees
A'B A and B waveforms are — AB
in perfect step with each other

Phase shift = 90 degrees g\
Ais ahead of B 90 degrees
(A"leads"B) L______ B
Phase shift =90 degrees - > B
B is ahead of A -90 degrees
(B "leads" A)
A

Phase shift = 180 degrees 180 degrees

A and B waveforms are A~——"--- > B
mirror-images of each other

— e
phase shift

The greater the phase shift in degrees between two waveforms, the greater the angle difference
between the corresponding vectors. Being a relative measurement, like voltage, phase shift (vector
angle) only has meaning in reference to some standard waveform. Generally this "reference” wave-
form is the main AC power supply voltage in the circuit. If there is more than one AC voltage source,
then one of those sources is arbitrarily chosen to be the phase reference for all other measurements
in the circuit.

This concept of a reference point is not unlike that of the ”ground” point in a circuit for the
benefit of voltage reference. With a clearly defined point in the circuit declared to be ”ground,” it
becomes possible to talk about voltage ”on” or ”at” single points in a circuit, being understood that
those voltages (always relative between two points) are referenced to ”ground.” Correspondingly,
with a clearly defined point of reference for phase it becomes possible to speak of voltages and
currents in an AC circuit having definite phase angles. Example: ”the current through resistor Ry is
24.3 milliamps at -64 degrees,” which means the current waveform lags 64° behind the main source
voltage waveform.

e REVIEW:
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e When used to describe an AC quantity, the length of a vector represents the amplitude of the
wave while the angle of a vector represents the phase angle of the wave relative to some other
(reference) waveform.

2.3 Simple vector addition

Remember that vectors are mathematical objects just like numbers on a number line: they can
be added, subtracted, multiplied, and divided. Addition is perhaps the easiest vector operation
to visualize, so we’ll begin with that. If vectors with common angles are added, their magnitudes
(lengths) add up just like regular scalar quantities:

length=6  length=8 total length =6 + 8 = 14
angle = 0 degrees  angle = 0 degrees angle = 0 degrees

Similarly, if AC voltage sources with the same phase angle are connected together in series, their
voltages add just as you might expect with DC batteries:

\Y \Y)
Odeg+ Odeg+ 6V+ 8V+
ZN ZN - I - I
V—) 11
- 114V > ———[14 V]———
0 deg

Please note the (+) and (-) polarity marks next to the leads of the two AC sources. Even though
we know AC doesn’t have ”polarity” in the same sense that DC does, these marks are essential to
knowing how to reference the given phase angles of the voltages. This will become more apparent
in the next example.

If vectors directly opposing each other (180° out of phase) are added together, their magnitudes
(lengths) subtract just like positive and negative scalar quantities subtract when added:

length = 6»angle = 0 degrees

) length =8 angle = 180 degrees

total length = 6 - 8 = -2 at 0 degrees
- or 2 at 180 degrees

Similarly, if opposing AC voltage sources are connected in series, their voltages subtract as you
might expect with DC batteries connected in an opposing fashion:
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6V 8V
Odeg+ 180 deg 6V+ +8V
ZN ZN "1 || =
W 11
- + + -
- 2V > 2V
180 deg 2V
\/\

Determining whether or not these voltage sources are opposing each other requires an examina-
tion of their polarity markings and their phase angles. Notice how the polarity markings in the above
diagram seem to indicate additive voltages (from left to right, we see - and + on the 6 volt source,
- and + on the 8 volt source). Even though these polarity markings would normally indicate an
additive effect in a DC circuit (the two voltages working together to produce a greater total voltage),
in this AC circuit they’re actually pushing in opposite directions because one of those voltages has
a phase angle of 0° and the other a phase angle of 180°. The result, of course, is a total voltage of
2 volts.

We could have just as well shown the opposing voltages subtracting in series like this:

Note how the polarities appear to be opposed to each other now, due to the reversal of wire
connections on the 8 volt source. Since both sources are listed as having equal phase angles (0°),
they truly are opposed to one another, and the overall effect is the same as the former scenario with
”additive” polarities and differing phase angles: a total voltage of only 2 volts.
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S RVA

6V 8V
0 deg 0 deg

AV oy
VW

il R v

180 deg
\/\

A
Y

A
Y

2V
0 deg

Just as there are two ways to
express the phase of the sources,
there are two ways to express
their resultant sum.

The resultant voltage can be expressed in two different ways: 2 volts at 180° with the (-) symbol
on the left and the (4) symbol on the right, or 2 volts at 0° with the (+) symbol on the left and the
(-) symbol on the right. A reversal of wires from an AC voltage source is the same as phase-shifting
that source by 180°.

8V 8V
180 deg These voltage sources 0 deg

;@l are equivalent! + :

2.4 A word on AC ”polarity”

Polarity markings within AC circuit schematics, and how these markings relate to phase angles, is
a potentially confusing subject. A few illustrations may help to clarify the issue.

Remember this important rule: phase is a relative measurement, the amount of shift always
being referenced to one particular waveform in a circuit. A waveform by itself really doesn’t have a
phase. It is only when we compare it with other waveforms that we can same anything meaningful
about ”its phase.” And when we reference to a waveform, we must make sure we know which end of
that waveform’s source is serving as the reference point. Polarity marks on AC voltage sources exist
simply to provide a frame of reference for phase angles, rather than to actually denote polarity of a
real voltage.

This is analogous to the polarity-marking of DC voltmeter test leads by color: red and black. In
electronics work, red typically represents ”positive” and black typically represents ”negative.” Does
this mean that the red test lead on a voltmeter will always be connected to the positive side of a
voltage source and the black test lead always connected to the negative? Of course not! Whoever
uses the voltmeter is free to connect it across a voltage source however they please. What the test
lead colors do is provide a frame of reference for the mathematical sign of the displayed voltage
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figure, so that the meter user knows what a negative or positive indication really means in relation
to actual circuit polarity:

Test lead colors provide a frame of reference
for interpreting the sign (+ or -) of the meter’s
indication.

OFF

Likewise, (+) and (-) polarity markings for an AC voltage source are given simply to provide a
frame of reference for interpreting that source’s stated phase angle. Another illustration may help
in understanding this. Suppose that two unlabeled DC voltage sources are connected together in
series, and we want to try to determine what the total resultant voltage is by reading the voltage
across each one (individually) with a voltmeter, then either adding or subtracting mathematically
to find the answer. First, we would measure the voltage of one source:
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The meter tells us +24 volts

Source 1 Source 2

Total voltage?

This first measurement of +24 across the left-hand voltage source tells us that the black lead of
the meter really is touching the negative side of voltage source #1, and the red lead of the meter
really is touching the positive. Thus, we know source #1 is a battery facing in this orientation:

Source 1 Source 2

Total voltage?

Measuring the other unknown voltage source:
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— | —l'l:l The meter tells us -17 volts

1
Total voltage?

This second voltmeter reading, however, is a negative (-) 17 volts, which tells us that the black
test lead is actually touching the positive side of voltage source #2, while the red test lead is actually
touching the negative. Thus, we know that source #2 is a battery facing in the opposite direction:

24V 17V

| | | | | |

| | | [
Source 1 Source 2

- +
Total voltage =7V

Only after correlating voltmeter readings with test lead orientation can we determine that these
two voltage sources are opposing each other, resulting in a total voltage of 7 volts (24 volts - 17
volts).

The positive (+) and negative (-) polarity markings associated with an AC voltage source serve
the same purpose as the red and black colors of a DC voltmeter’s test leads. If there was such a thing
as a ”"phasemeter” that could directly indicate phase angle (it would require a second AC voltage
source to act as a reference in time), it could provide two different indications of phase angle while
measuring the waveform of the same AC source, depending on how we connected the test leads:
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"phasemeter"
+

— 0deg
blackli —lred
70\
red black
180 deg

+ -
"phasemeter"

So, when you see an AC voltage designated as such . . .

8V
0 deg
- +
O
. it means that our hypothetical ”phasemeter” would read 0° phase shift with its ”"negative”
(black) test lead touching the left wire and its ”positive” (red) test lead touching the right wire, the
(+) and (-) symbols merely providing a frame of reference for the phase angle figure. It would also
be perfectly okay to represent that very same source’s phase like this (notice the switch in polarity
markings):

8V
180 deg
.

)

2.5 Complex vector addition

If vectors with uncommon angles are added, their magnitudes (lengths) add up quite differently than
that of scalar magnitudes:

Vector addition

Ierlwgth 5:31103 6 at 0 degrees
angle = 53. _
%egrees length = 8 + 8 at 90 degrees

angle = 90 degrees
10 at 53.13 degrees

length =6
angle = 0 degrees
If two AC voltages — 90° out of phase — are added together by being connected in series, their
voltage magnitudes do not directly add or subtract as with scalar voltages in DC. Instead, these
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voltage quantities are complex quantities, and just like the above vectors, which add up in a trigono-
metric fashion, a 6 volt source at 0° added to an 8 volt source at 90° results in 10 volts at a phase
angle of 53.13°:

/\/”\/

6V
0 deg 90 deg

70 NN N
) )

~ 10V }F—
53.13 deg

U

Compared to DC circuit analysis, this is very strange indeed. Note that it’s possible to obtain
voltmeter indications of 6 and 8 volts, respectively, across the two AC voltage sources, yet only read
10 volts for a total voltage!

There is no suitable DC analogy for what we’re seeing here with two AC voltages slightly out of
phase. DC voltages can only directly aid or directly oppose, with nothing in between. With AC, two
voltages can be aiding or opposing one another to any degree between fully-aiding and fully-opposing,
inclusive. Without the use of vector (complex number) notation to describe AC quantities, it would
be wvery difficult to perform mathematical calculations for AC circuit analysis.

In the next section, we’ll learn how to represent vector quantities in symbolic rather than graph-
ical form. Vector and triangle diagrams suffice to illustrate the general concept, but more precise
methods of symbolism must be used if any serious calculations are to be performed on these quan-
tities.

e REVIEW:

e DC voltages can only either directly aid or directly oppose each other when connected in series.
AC voltages may aid or oppose to any degree depending on the phase shift between them.

2.6 Polar and rectangular notation

In order to work with these complex numbers without drawing vectors, we first need some kind of
standard mathematical notation. There are two basic forms of complex number notation: polar and
rectangular.

Polar form is where a complex number is denoted by the length (otherwise known as the mag-
nitude, absolute value, or modulus) and the angle of its vector (usually denoted by an angle symbol
that looks like this: /). To use the map analogy, polar notation for the vector from New York City
to San Diego would be something like 72400 miles, southwest.” Here are two examples of vectors
and their polar notations:
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8.06 0 -29.74°
Ngfe [ 330.26°)
8.49 [ 45°

Note: the proper notation for designating a vector’s angle
is this symbol: 0

T 50182 7.810 230.19°

(7.81 0 -129.81°)

Standard orientation for vector angles in AC circuit calculations defines 0° as being to the right
(horizontal), making 90° straight up, 180° to the left, and 270° straight down. Please note that
vectors angled ”down” can have angles represented in polar form as positive numbers in excess of
180, or negative numbers less than 180. For example, a vector angled / 270° (straight down) can
also be said to have an angle of -90°. The above vector on the right (5.4 Z 326°) can also be denoted
as 5.4 / -34°.

The vector "compass”

90°

180° o°

270°
(-90°)

Rectangular form, on the other hand, is where a complex number is denoted by its respective
horizontal and vertical components. In essence, the angled vector is taken to be the hypotenuse of a
right triangle, described by the lengths of the adjacent and opposite sides. Rather than describing
a vector’s length and direction by denoting magnitude and angle, it is described in terms of "how
far left/right” and ”how far up/down.”

These two dimensional figures (horizontal and vertical) are symbolized by two numerical figures.
In order to distinguish the horizontal and vertical dimensions from each other, the vertical is prefixed
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with a lower-case ”1” (in pure mathematics) or ”j” (in electronics). These lower-case letters do not
represent a physical variable (such as instantaneous current, also symbolized by a lower-case letter
”i”), but rather are mathematical ”operators” used to distinguish the vector’s vertical component
from its horizontal component. As a complete complex number, the horizontal and vertical quantities
are written as a sum:

In "rectangular” form, a vector’s length and direction
are denoted in terms of its horizontal and vertical span,
the first number representing the horixontal ("real”) and
the second number (with the "j" prefix) representing the
vertical ("imaginary") dimensions.

—_—
: 4+j0
4+j4 "4 right and 0 up/down” -4 +j4
"4 right and 4 up” "4 left and 4 up"
~—
: -4 +j0
4-ij4 "4 left and O up/down" -4 -j4
"4 right and 4 down" "4 left and 4 down"
+ "imaginary"
*]
- "real" + "real"
7
- "imaginary"

The horizontal component is referred to as the real component, since that dimension is compatible
with normal, scalar ("real”) numbers. The vertical component is referred to as the imaginary
component, since that dimension lies in a different direction, totally alien to the scale of the real
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numbers.

The "real” axis of the graph corresponds to the familiar number line we saw earlier: the one with
both positive and negative values on it. The ”"imaginary” axis of the graph corresponds to another
number line situated at 90° to the "real” one. Vectors being two-dimensional things, we must have
a two-dimensional "map” upon which to express them, thus the two number lines perpendicular to
each other:

s

"imaginary"
number lihe | 2

—— "real" number line —

Either method of notation is valid for complex numbers. The primary reason for having two
methods of notation is for ease of longhand calculation, rectangular form lending itself to addition
and subtraction, and polar form lending itself to multiplication and division.

Conversion between the two notational forms involves simple trigonometry. To convert from
polar to rectangular, find the real component by multiplying the polar magnitude by the cosine
of the angle, and the imaginary component by multiplying the polar magnitude by the sine of the
angle. This may be understood more readily by drawing the quantities as sides of a right triangle,
the hypotenuse of the triangle representing the vector itself (its length and angle with respect to the
horizontal constituting the polar form), the horizontal and vertical sides representing the "real” and
”imaginary” rectangular components, respectively:
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50 36.87° (polar form)

(5)(cos36.87°) =4  (real component)
(5)(sin36.87°) =3 (imaginary component)

4+j3 (rectangular form)

To convert from rectangular to polar, find the polar magnitude through the use of the Pythagorean
Theorem (the polar magnitude is the hypotenuse of a right triangle, and the real and imaginary com-
ponents are the adjacent and opposite sides, respectively), and the angle by taking the arctangent
of the imaginary component divided by the real component:

4+]3 (rectangular form)
c=Va+h? (pythagorean theorem)

polar magnitude ="\ 4% + 3°

polar magnitude = 5

_ 3
polar angle = arctan e

polar angle = 36.87°

5036.87° (polar form)

e REVIEW:

e Polar notation denotes a complex number in terms of its vector’s length and angular direction
from the starting point. Example: fly 45 miles / 203° (West by Southwest).

e Rectangular notation denotes a complex number in terms of its horizontal and vertical dimen-
sions. Example: drive 41 miles West, then turn and drive 18 miles South.
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e In rectangular notation, the first quantity is the ”real” component (horizontal dimension of
vector) and the second quantity is the ”imaginary” component (vertical dimension of vector).

NN

The imaginary component is preceded by a lower-case ”j,” sometimes called the ”j operator.”

e Both polar and rectangular forms of notation for a complex number can be related graphically
in the form of a right triangle, with the hypotenuse representing the vector itself (polar form:
hypotenuse length = magnitude; angle with respect to horizontal side = angle), the horizontal
side representing the rectangular "real” component, and the vertical side representing the
rectangular ”imaginary” component.

2.7 Complex number arithmetic

Since complex numbers are legitimate mathematical entities, just like scalar numbers, they can
be added, subtracted, multiplied, divided, squared, inverted, and such, just like any other kind of
number. Some scientific calculators are programmed to directly perform these operations on two or
more complex numbers, but these operations can also be done "by hand.” This section will show
you how the basic operations are performed. It is highly recommended that you equip yourself with
a scientific calculator capable of performing arithmetic functions easily on complex numbers. It will
make your study of AC circuit much more pleasant than if you’re forced to do all calculations the
longer way.

Addition and subtraction with complex numbers in rectangular form is easy. For addition, simply
add up the real components of the complex numbers to determine the real component of the sum, and
add up the imaginary components of the complex numbers to determine the imaginary component
of the sum:

2+ij5 175- 34 -36+j10
+4-j3 +80-j15 +20+j82
6+)2 255 - j49 16 +]92

When subtracting complex numbers in rectangular form, simply subtract the real component of
the second complex number from the real component of the first to arrive at the real component
of the difference, and subtract the imaginary component of the second complex number from the
imaginary component of the first to arrive the imaginary component of the difference:

2+ij5 175- 34 -36+j10
- 4-j3 - 80-j15 - 20+82
2+j8 95-j19 -56-j72

For longhand multiplication and division, polar is the favored notation to work with. When
multiplying complex numbers in polar form, simply multiply the polar magnitudes of the complex
numbers to determine the polar magnitude of the product, and add the angles of the complex
numbers to determine the angle of the product:
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(35 0 65°)(10 O -12°) = 350 [ 53°

(124 0 250°)(11 O 100°) = 1364 O -10°
or
1364 0 350°

(30 30%(5 0 -30% =150 0°

Division of polar-form complex numbers is also easy: simply divide the polar magnitude of the
first complex number by the polar magnitude of the second complex number to arrive at the polar
magnitude of the quotient, and subtract the angle of the second complex number from the angle of
the first complex number to arrive at the angle of the quotient:

350 65°

- =as0 7
0
% = 11.273 01 150°
(]
—:DD ?;%0 = 0.6 0 60°

To obtain the reciprocal, or “invert” (1/x), a complex number, simply divide the number (in polar
form) into a scalar value of 1, which is nothing more than a complex number with no imaginary
component (angle = 0):

o}
= =140 0.02857 [ -65°

350 65° 350 65°

(]
1 - 100 _gip1e
100-12°  100-12°
(]
1 - 100 _3105010°
0.0032 0 10 0.0032 0 10

These are the basic operations you will need to know in order to manipulate complex numbers
in the analysis of AC circuits. Operations with complex numbers are by no means limited just
to addition, subtraction, multiplication, division, and inversion, however. Virtually any arithmetic
operation that can be done with scalar numbers can be done with complex numbers, including
powers, roots, solving simultaneous equations with complex coefficients, and even trigonometric
functions (although this involves a whole new perspective in trigonometry called hyperbolic functions
which is well beyond the scope of this discussion). Be sure that you’re familiar with the basic
arithmetic operations of addition, subtraction, multiplication, division, and inversion, and you’ll
have little trouble with AC circuit analysis.
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e REVIEW:

e To add complex numbers in rectangular form, add the real components and add the imaginary
components. Subtraction is similar.

e To multiply complex numbers in polar form, multiply the magnitudes and add the angles. To
divide, divide the magnitudes and subtract one angle from the other.

2.8 Some examples with AC circuits

Let’s connect three AC voltage sources in series and use complex numbers to determine additive
voltages. All the rules and laws learned in the study of DC circuits apply to AC circuits as well
(Ohm’s Law, Kirchhoff’s Laws, network analysis methods), with the exception of power calculations.
The only qualification is that all variables must be expressed in complex form, taking into account
phase as well as magnitude, and all voltages and currents must be of the same frequency (in order
that their phase relationships remain constant).

+
22V [0 -64° 6@ E,

12V 0 35° @j E, 3 load

+

15V 0 0° @ES

The polarity marks for all three voltage sources are oriented in such a way that their stated volt-
ages should add to make the total voltage across the load resistor. Notice that although magnitude
and phase angle is given for each AC voltage source, no frequency value is specified. If this is the
case, it is assumed that all frequencies are equal, thus meeting our qualifications for applying DC
rules to an AC circuit (all figures given in complex form, all of the same frequency). The setup of
our equation to find total voltage appears as such:

Biota =E1 +E; + 5

Euy = (22V 0 -64% + (12V O 35°) + (15 V O 0°)

Graphically, the vectors add up in this manner:



2.8. SOME EXAMPLES WITH AC CIRCUITS 43

1500°

The sum of these vectors will be a resultant vector originating at the starting point for the 22
volt vector (dot at upper-left of diagram) and terminating at the ending point for the 15 volt vector
(arrow tip at the middle-right of the diagram):

resultant vector

220 -64°

In order to determine what the resultant vector’s magnitude and angle are without resorting to
graphic images, we can convert each one of these polar-form complex numbers into rectangular form
and add. Remember, we’re adding these figures together because the polarity marks for the three
voltage sources are oriented in an additive manner:
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15V 00°=15+j0V
12V [0 35° = 9.8298 + }6.8829 V/
22V O -64° = 9.6442 - 19.7735 V
15 +j0 V
9.8298 +j6.8829V

+ 96442 -j19.7735V
34.4740 - | 12.8906 VV

In polar form, this equates to 36.8052 volts / -20.5018°. What this means in real terms is that
the voltage measured across these three voltage sources will be 36.8052 volts, lagging the 15 volt (0°
phase reference) by 20.5018°. A voltmeter connected across these points in a real circuit would only
indicate the polar magnitude of the voltage (36.8052 volts), not the angle. An oscilloscope could
be used to display two voltage waveforms and thus provide a phase shift measurement, but not a
voltmeter. The same principle holds true for AC ammeters: they indicate the polar magnitude of
the current, not the phase angle.

This is extremely important in relating calculated figures of voltage and current to real circuits.
Although rectangular notation is convenient for addition and subtraction, and was indeed the final
step in our sample problem here, it is not very applicable to practical measurements. Rectangular
figures must be converted to polar figures (specifically polar magnitude) before they can be related
to actual circuit measurements.

We can use SPICE to verify the accuracy of our results. In this test circuit, the 10 k() resistor
value is quite arbitrary. It’s there so that SPICE does not declare an open-circuit error and abort
analysis. Also, the choice of frequencies for the simulation (60 Hz) is quite arbitrary, because resistors
respond uniformly for all frequencies of AC voltage and current. There are other components
(notably capacitors and inductors) which do not respond uniformly to different frequencies, but that
is another subject!
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3 3

22V 0 -64° (5\/1
T
12V [0 35° @vz RlilokQ
T
.

15V 0 0° @W

0 0

ac voltage addition
vl 1 0 ac 15 0 sin

v2 2 1 ac 12 35 sin
v3 3 2 ac 22 -64 sin

rl1 3 0 10k

.ac 1lin 1 60 60 I’m using a frequency of 60 Hz
.print ac v(3,0) vp(3,0) as a default value

.end

freq v(3) vp(3)

6.000E+01 3.681E+01 -2.050E+01

Sure enough, we get a total voltage of 36.81 volts Z -20.5° (with reference to the 15 volt source,
whose phase angle was arbitrarily stated at zero degrees so as to be the "reference” waveform).

At first glance, this is counter-intuitive. How is it possible to obtain a total voltage of just over
36 volts with 15 volt, 12 volt, and 22 volt supplies connected in series? With DC, this would be
impossible, as voltage figures will either directly add or subtract, depending on polarity. But with
AC, our ”polarity” (phase shift) can vary anywhere in between full-aiding and full-opposing, and
this allows for such paradoxical summing.

What if we took the same circuit and reversed one of the supply’s connections? Its contribution
to the total voltage would then be the opposite of what it was before:



46 CHAPTER 2. COMPLEX NUMBERS

+
22V [0 -64° d} E,

Polarity reversed on
source E, !

12V [0 35° @ E; % load
+

+
15V 0 0° @ES

Note how the 12 volt supply’s phase angle is still referred to as 35°, even though the leads have
been reversed. Remember that the phase angle of any voltage drop is stated in reference to its noted
polarity. Even though the angle is still written as 35°, the vector will be drawn 180° opposite of
what it was before:

12 00 35° (reversed) = 12 0 215°
or
-12 0 3%°

1500°

The resultant (sum) vector should begin at the upper-left point (origin of the 22 volt vector) and
terminate at the right arrow tip of the 15 volt vector:
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220 -64°

resultant vector

12 00 35° (reversed) = 12 O 215°

1500°

47

The connection reversal on the 12 volt supply can be represented in two different ways in polar
form: by an addition of 180° to its vector angle (making it 12 volts Z 215°), or a reversal of sign on
the magnitude (making it -12 volts £ 35°). Either way, conversion to rectangular form yields the

same result:

12V 0 35° (reversed) = 12V [0 215°
or
-12v O 3%°

15 +]j0 Vv
-9.8298 - j6.8829 VV
+ 9.6442 -j19.7735V
14.8143 - | 26.6564 V/

-9.8298 - 6.8829 V

-9.8298 - j6.8829 V

The resulting addition of voltages in rectangular form, then:

In polar form, this equates to 30.4964 V / -60.9368°. Once again, we will use SPICE to verify

the results of our calculations:

ac voltage addition
vl 1 0 ac 15 0 sin

v2 1 2 ac 12 35 sin Note the reversal of node numbers 2 and 1
v3 3 2 ac 22 -64 sin to simulate the swapping of connections

rl 3 0 10k

.ac 1lin 1 60 60

.print ac v(3,0) vp(3,0)
.end
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freq v(3) vp(3)
6.000E+01 3.050E+01 -6.094E+01
e REVIEW:

e All the laws and rules of DC circuits apply to AC circuits, with the exception of power calcu-
lations, so long as all values are expressed and manipulated in complex form, and all voltages
and currents are at the same frequency.

e When reversing the direction of a vector (equivalent to reversing the polarity of an AC voltage
source in relation to other voltage sources), it can be expressed in either of two different ways:
adding 180° to the angle, or reversing the sign of the magnitude.

e Meter measurements in an AC circuit correspond to the polar magnitudes of calculated values.
Rectangular expressions of complex quantities in an AC circuit have no direct, empirical equiv-
alent, although they are convenient for performing addition and subtraction, as Kirchhoff’s
Voltage and Current Laws require.



Chapter 3

REACTANCE AND
IMPEDANCE - INDUCTIVE

3.1 Ac resistor circuits

@ R

If we were to plot the current and voltage for a very simple AC circuit consisting of a source and
a resistor, it would look something like this:

Time —

Because the resistor simply and directly resists the flow of electrons at all periods of time, the
waveform for the voltage drop across the resistor is exactly in phase with the waveform for the
current through it. We can look at any point in time along the horizontal axis of the plot and
compare those values of current and voltage with each other (any ”snapshot” look at the values of
a wave are referred to as instantaneous values, meaning the values at that instant in time). When
the instantaneous value for current is zero, the instantaneous voltage across the resistor is also zero.
Likewise, at the moment in time where the current through the resistor is at its positive peak, the
voltage across the resistor is also at its positive peak, and so on. At any given point in time along

49
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the waves, Ohm’s Law holds true for the instantaneous values of voltage and current.

We can also calculate the power dissipated by this resistor, and plot those values on the same
graph:

Time —

Note that the power is never a negative value. When the current is positive (above the line), the
voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely, when the current
is negative (below the line), the voltage is also negative, which results in a positive value for power
(a negative number multiplied by a negative number equals a positive number). This consistent
”polarity” of power tells us that the resistor is always dissipating power, taking it from the source
and releasing it in the form of heat energy. Whether the current is positive or negative, a resistor
still dissipates energy.

3.2 AC inductor circuits

Inductors do not behave the same as resistors. Whereas resistors simply oppose the flow of electrons
through them (by dropping a voltage directly proportional to the current), inductors oppose changes
in current through them, by dropping a voltage directly proportional to the rate of change of current.
In accordance with Lenz’s Law, this induced voltage is always of such a polarity as to try to maintain
current at its present value. That is, if current is increasing in magnitude, the induced voltage will
”push against” the electron flow; if current is decreasing, the polarity will reverse and ”push with”
the electron flow to oppose the decrease. This opposition to current change is called reactance,
rather than resistance.

Expressed mathematically, the relationship between the voltage dropped across the inductor and
rate of current change through the inductor is as such:

- di
e= L—-
dt
The expression di/dt is one from calculus, meaning the rate of change of instantaneous current
over time, in amps per second. The inductance (L) is in Henrys, and the instantaneous voltage (e),
of course, is in volts. To show what happens with alternating current, let’s analyze a simple inductor
circuit:
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@ L

If we were to plot the current and voltage for this very simple circuit, it would look something
like this:

Remember, the voltage dropped across an inductor is a reaction against the change in current
through it. Therefore, the instantaneous voltage is zero whenever the instantaneous current is at a
peak (zero change, or level slope, on the current sine wave), and the instantaneous voltage is at a
peak wherever the instantaneous current is at maximum change (the points of steepest slope on the
current wave, where it crosses the zero line). This results in a voltage wave that is 90° out of phase
with the current wave. Looking at the graph, the voltage wave seems to have a "head start” on the
current wave; the voltage ”leads” the current, and the current ”lags” behind the voltage.

current slope =0 current slope = max. (+)
voltage =0 voltage = max. (+)

; Time —>
. current slope = 0
voltage =0

current slope = max. (-)
voltage = max. (-)

Things get even more interesting when we plot the power for this circuit:
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Because instantaneous power is the product of the instantaneous voltage and the instantaneous
current (p=ie), the power equals zero whenever the instantaneous current or voltage is zero. When-
ever the instantaneous current and voltage are both positive (above the line), the power is positive.
As with the resistor example, the power is also positive when the instantaneous current and voltage
are both negative (below the line). However, because the current and voltage waves are 90° out of
phase, there are times when one is positive while the other is negative, resulting in equally frequent
occurrences of negative instantaneous power.

But what does negative power mean? It means that the inductor is releasing power back to the
circuit, while a positive power means that it is absorbing power from the circuit. Since the positive
and negative power cycles are equal in magnitude and duration over time, the inductor releases just
as much power back to the circuit as it absorbs over the span of a complete cycle. What this means
in a practical sense is that the reactance of an inductor dissipates a net energy of zero, quite unlike
the resistance of a resistor, which dissipates energy in the form of heat. Mind you, this is for perfect
inductors only, which have no wire resistance.

An inductor’s opposition to change in current translates to an opposition to alternating current
in general, which is by definition always changing in instantaneous magnitude and direction. This
opposition to alternating current is similar to resistance, but different in that it always results in a
phase shift between current and voltage, and it dissipates zero power. Because of the differences,
it has a different name: reactance. Reactance to AC is expressed in ohms, just like resistance is,
except that its mathematical symbol is X instead of R. To be specific, reactance associate with an
inductor is usually symbolized by the capital letter X with a letter L as a subscript, like this: Xp.

Since inductors drop voltage in proportion to the rate of current change, they will drop more
voltage for faster-changing currents, and less voltage for slower-changing currents. What this means
is that reactance in ohms for any inductor is directly proportional to the frequency of the alternating
current:

X, = 2nfL

For a 10 mH inductor:

Frequency (Hertz) Reactance (Ohms)
| 60 | 3.7699 |
[ |
I 120 | 7.5398 I
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AC current in a simple inductive circuit is equal to the voltage (in volts) divided by the inductive
reactance (in ohms), just as AC or DC current in a simple resistive circuit is equal to the voltage
(in volts) divided by the resistance (in ohms).

10V /\) L 10 mH
60 Hz

(inductive reactance of 10 mH inductor at 60 Hz)
X, =3.7699 Q

E
X

10V
3.7699 Q

| =2.6526 A

However, we need to keep in mind that voltage and current are not in phase here. As was shown
earlier, the voltage has a phase shift of +90° with respect to the current. If we represent these
phase angles of voltage and current mathematically in the form of complex numbers, we find that
an inductor’s opposition to current has a phase angle, too:

Opposition __Voltage
Current
.. 10v O
Opposition =
2.6526 A 0 Q°

Opposition =3.7699 Q [0 90°
or

0+j3.7699 Q
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For an inductor:

900 900

I Opposition
(X0

Mathematically, we say that the phase angle of an inductor’s opposition to current is 90°, meaning
that an inductor’s opposition to current is a positive imaginary quantity. This phase angle of reactive
opposition to current becomes critically important in circuit analysis, especially for complex AC
circuits where reactance and resistance interact. It will prove beneficial to represent any component’s
opposition to current in terms of complex numbers rather than scalar quantities of resistance and
reactance.

¢ REVIEW:

o Inductive reactance is the opposition that an inductor offers to alternating current due to its
phase-shifted storage and release of energy in its magnetic field. Reactance is symbolized by
the capital letter ”X” and is measured in ohms just like resistance (R).

e Inductive reactance can be calculated using this formula: X; = 2x#fL

e Inductive reactance increases with increasing frequency. In other words, the higher the fre-
quency, the more it opposes the AC flow of electrons.

3.3 Series resistor-inductor circuits

In the previous section, we explored what would happen in simple resistor-only and inductor-only
AC circuits. Now we will mix the two components together in series form and investigate the effects.
Take this circuit as an example to work with:

R

VWA

5Q
0oV L =10 mH
60 Hz /\D

The resistor will offer 5 Q of resistance to AC current regardless of frequency, while the inductor
will offer 3.7699 Q of reactance to AC current at 60 Hz. Because the resistor’s resistance is a real
number (5 Q £ 0%, or 5 + jO Q), and the inductor’s reactance is an imaginary number (3.7699
Q /£ 90° or 0 + j3.7699 ), the combined effect of the two components will be an opposition to
current equal to the complex sum of the two numbers. This combined opposition will be a vector
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combination of resistance and reactance. In order to express this opposition succinctly, we need a
more comprehensive term for opposition to current than either resistance or reactance alone. This
term is called impedance, its symbol is Z, and it is also expressed in the unit of ohms, just like
resistance and reactance. In the above example, the total circuit impedance is:

Zoia = (5 Q resistance) + (3.7699 Q inductive reactance)

Zwy =5Q(R) + 3.7699Q (X,)

Ziow = (5Q 0 0°) +(3.7699 Q 0 90°)
or

(5+j0 Q) + (0 +j3.7699 Q)

Ziwa =5+j3.7699Q  or 6.262Q 0 37.016°

Impedance is related to voltage and current just as you might expect, in a manner similar to
resistance in Ohm’s Law:

Ohm'’s Law for AC circuits:

All quantities expressed in
complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to the
flow of electrons than resistance is. Any resistance and any reactance, separately or in combination
(series/parallel), can be and should be represented as a single impedance in an AC circuit.

To calculate current in the above circuit, we first need to give a phase angle reference for the
voltage source, which is generally assumed to be zero. (The phase angles of resistive and inductive
impedance are always 0° and +90°, respectively, regardless of the given phase angles for voltage or
current).

|:£
z

_ ovaooee
6.262 Q [ 37.016°

| = 1.597 A 00 -37.016°

As with the purely inductive circuit, the current wave lags behind the voltage wave (of the
source), although this time the lag is not as great: only 37.016° as opposed to a full 90° as was the
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case in the purely inductive circuit.

phase shift =
37.016°

For the resistor and the inductor, the phase relationships between voltage and current haven’t
changed. Across voltage across the resistor is in phase (0° shift) with the current through it; and the
voltage across the inductor is +90° out of phase with the current going through it. We can verify
this mathematically:

E=IZ
Er = IrZr
Er = (1.597 A 0 -37.016°)(5 Q O 0°)

Er =7.9847V [ -37.016°

Notice that the phase angle of Ej is equal to
the phase angle of the current.

The voltage across the resistor has the exact same phase angle as the current through it, telling
us that E and I are in phase (for the resistor only).

E=1Z
E =124

E, = (1.597 A [ -37.016°)(3.7699 Q I 90°)

E, = 6.0203V [ 52.984°

Natice that the phase angle of E, is exactly
90° more than the phase angle of the current.

The voltage across the inductor has a phase angle of 52.984°, while the current through the
inductor has a phase angle of -37.016°, a difference of exactly 90° between the two. This tells us
that E and T are still 90° out of phase (for the inductor only).
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We can also mathematically prove that these complex values add together to make the total
voltage, just as Kirchhoff’s Voltage Law would predict:

Eiota = Er + EL

i = (7.9847 V 0 -37.016°) + (6.0203 V 0 52.984°)

Eia =10V 0 0°

Let’s check the validity of our calculations with SPICE:

1 R
5Q
10V L =310 mH
60 Hz /\D
0 0

ac r-1 circuit

vl 1 0 ac 10 sin

ri125

11 2 0 10m

.ac lin 1 60 60

.print ac v(1,2) v(2,0) i(vl)
.print ac vp(1,2) vp(2,0) ip(vl)
.end

freq v(1,2) v(2)
6.000E+01 7.985E+00 6.020E+00
freq vp(1,2) vp(2)
6.000E+01 -3.702E+01 5.298E+01

Interpreted SPICE results
Er=7.985V [ -37.02°

E, =6.020V [ 52.98°

| =1.597 A O 143.0°

i(v1)
1.597E+00
ip(vl)
1.430E+02

Note that just as with DC circuits, SPICE outputs current figures as though they were negative
(180° out of phase) with the supply voltage. Instead of a phase angle of -37.016°, we get a current
phase angle of 143° (-37° + 180°). This is merely an idiosyncrasy of SPICE and does not represent
anything significant in the circuit simulation itself. Note how both the resistor and inductor voltage
phase readings match our calculations (-37.02° and 52.98°, respectively), just as we expected them

to.
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With all these figures to keep track of for even such a simple circuit as this, it would be beneficial
for us to use the ”table” method. Applying a table to this simple series resistor-inductor circuit
would proceed as such. First, draw up a table for E/I/Z figures and insert all component values in
these terms (in other words, don’t insert actual resistance or inductance values in Ohms and Henrys,
respectively, into the table; rather, convert them into complex figures of impedance and write those
in):

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+ jOO 0+ 13.76990 ohms
500 3.7699 O 90

Although it isn’t necessary, I find it helpful to write both the rectangular and polar forms of
each quantity in the table. If you are using a calculator that has the ability to perform complex
arithmetic without the need for conversion between rectangular and polar forms, then this extra
documentation is completely unnecessary. However, if you are forced to perform complex arithmetic
”longhand” (addition and subtraction in rectangular form, and multiplication and division in polar
form), writing each quantity in both forms will be useful indeed.

Now that our ”given” figures are inserted into their respective locations in the table, we can
proceed just as with DC: determine the total impedance from the individual impedances. Since this
is a series circuit, we know that opposition to electron flow (resistance or impedance) adds to form
the total opposition:

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+j0 0+j3.7699 5+j3.7699 ohms
500° 3.7699 O 90° 6.262 0 37.016° -
Rule of series
circuits
Ziga =Zr+Z,

Now that we know total voltage and total impedance, we can apply Ohm’s Law (I=E/Z) to
determine total current:
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R L Total
10+j0
100 0°

1.2751-j0.9614
1.597 0 -37.016°

5+j3.7699
6.262 0 37.016°

Volts

Amps

5+j0
500°

0+j3.7699

Ohms
3.7699 O 90°

Just as with DC, the total current in a series AC circuit is shared equally by all components.
This is still true because in a series circuit there is only a single path for electrons to flow, therefore
the rate of their flow must uniform throughout. Consequently, we can transfer the figures for current
into the columns for the resistor and inductor alike:

Rule of series

circuits:

R L Total
10+j0
E
100 0° Volts
1.2751-j0.9614 1.2751-j0.9614 1.2751-j0.9614 Amps
1.597 O -37.016° 1.597 O -37.016° 1.597 O -37.016° -
5+j0 0+j3.7699 5+j3.7699
Ohms
500° 3.7699 O 90° 6.262 0 37.016°

lota = IR =1L

Now all that’s left to figure is the voltage drop across the resistor and inductor, respectively.
This is done through the use of Ohm’s Law (E=IZ), applied vertically in each column of the table:
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R L Total
£ | 63756-j48071 3.6244 +4.8071 10+j0 Vol
7.9847 0 -37.016° | 6.0203 [ 52.984° 100 0° olts
1.2751 - j0.9614 1.2751 - j0.9614 12751-0.9614 |
1597 [ -37.016° 1597 0-37.016° | 1.597 O -37.016°
. 5+j0 0+]3.7699 5+3.7699 Ohms
500° 3.7699 [ 90° 6.262 [ 37.016°
Ohm'’s Ohm'’s
Law Law
E=1Z E=1Z

And with that, our table is complete. The exact same rules we applied in the analysis of DC
circuits apply to AC circuits as well, with the caveat that all quantities must be represented and
calculated in complex rather than scalar form. So long as phase shift is properly represented in our
calculations, there is no fundamental difference in how we approach basic AC circuit analysis versus
DC.

Now is a good time to review the relationship between these calculated figures and readings
given by actual instrument measurements of voltage and current. The figures here that directly
relate to real-life measurements are those in polar notation, not rectangular! In other words, if
you were to connect a voltmeter across the resistor in this circuit, it would indicate 7.9847 volts,
not 6.3756 (real rectangular) or 4.8071 (imaginary rectangular) volts. To describe this in graphical
terms, measurement instruments simply tell you how long the vector is for that particular quantity
(voltage or current).

Rectangular notation, while convenient for arithmetical addition and subtraction, is a more
abstract form of notation than polar in relation to real-world measurements. As I stated before, I
will indicate both polar and rectangular forms of each quantity in my AC circuit tables simply for
convenience of mathematical calculation. This is not absolutely necessary, but may be helpful for
those following along without the benefit of an advanced calculator. If we were restrict ourselves to
the use of only one form of notation, the best choice would be polar, because it is the only one that
can be directly correlated to real measurements.

e REVIEW:

e Impedance is the total measure of opposition to electric current and is the complex (vector)
sum of ("real”) resistance and (”imaginary”) reactance. It is symbolized by the letter ”Z” and
measured in ohms, just like resistance (R) and reactance (X).

e Impedances (Z) are managed just like resistances (R) in series circuit analysis: series impedances
add to form the total impedance. Just be sure to perform all calculations in complex (not
scalar) form! ZTotal = Zl + ZQ + ... Zn

e A purely resistive impedance will always have a phase angle of exactly 0° (Zg = R Q Z 0°).

e A purely inductive impedance will always have a phase angle of exactly +90° (Zr, = Xz  /
90°).



3.4. PARALLEL RESISTOR-INDUCTOR CIRCUITS 61

e Ohm’s Law for AC circuits: E=1Z ;I1=E/Z;Z = E/I

e When resistors and inductors are mixed together in circuits, the total impedance will have
a phase angle somewhere between 0° and +90°. The circuit current will have a phase angle
somewhere between 0° and -90°.

e Series AC circuits exhibit the same fundamental properties as series DC circuits: current is
uniform throughout the circuit, voltage drops add to form the total voltage, and impedances
add to form the total impedance.

3.4 Parallel resistor-inductor circuits

Let’s take the same components for our series example circuit and connect them in parallel:

10V RI5Q LX10mH
60 Hz

Because the power source has the same frequency as the series example circuit, and the resistor
and inductor both have the same values of resistance and inductance, respectively, they must also
have the same values of impedance. So, we can begin our analysis table with the same ”given”
values:

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+j0 0+)3.7699 Ohms
500° 3.7699 00 90°

The only difference in our analysis technique this time is that we will apply the rules of parallel
circuits instead of the rules for series circuits. The approach is fundamentally the same as for DC.
We know that voltage is shared uniformly by all components in a parallel circuit, so we can transfer
the figure of total voltage (10 volts / 0°) to all components columns:
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R L Total
10 +j0 10 +j0 10 +j0
E 100 0° 100 0° 100 0° Volts
-
| Amps
7 5+j0 0+3.7699 Ohms
500° 3.7699 O 90°
Rule of parallel
circuits:
Eoa =Er=EL

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns of the table, calculating current
through the resistor and current through the inductor:

R L Tota
E 10+j0 10+j0 10+j0 Vol
100 0° 100 0° 100 0° olts
| 2+j0 0-j2.6526 Amps
200° 2.6526 0 -90°
7 5+j0 0+)3.7699 Ohms
500° 3.7699 O 90°
Ohm’s Ohm’s
Law Law
| = E | = E
V4 Z

Just as with DC circuits, branch currents in a parallel AC circuit add to form the total current
(Kirchhoft’s Current Law still holds true for AC as it did for DC):

R L Total

E 10+j0 10+j0 10+j0 Vol
100 0° 100 0° 100 0° olts

| 2+j0 0-j2.6526 2-]2.6526 Amps
20 0° 2.6526 [1 -90° 332210052988 | o

7 5+ JO0 0+ 13.7699o Ohms
500 3.7699 [ 90

Rule of parallel
circuits:

lota = 1R * I
Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the ”To-
tal” column. Incidentally, parallel impedance can also be calculated by using a reciprocal formula
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identical to that used in calculating parallel resistances.

1

1.1 01

VARS Z,

The only problem with using this formula is that it typically involves a lot of calculator keystrokes
to carry out. And if you're determined to run through a formula like this ”longhand,” be prepared
for a very large amount of work! But, just as with DC circuits, we often have multiple options in
calculating the quantities in our analysis tables, and this example is no different. No matter which
way you calculate total impedance (Ohm’s Law or the reciprocal formula), you will arrive at the
same figure:

Zpaalld =

R L Tota
E 10+j0 10+j0 10+j0 Vol
100 0° 1000 1000° olts
2+j0 0-j2.6526 2-j2.6526
| Amps
200° 2.6526 0 -90° 3.322 0 -52.984°
. 5+j0 0+j3.7699 18122+j24035 | o
500° 3.7699 O 90° 3.0102 [0 52.984°
Ohm’s Rule of parallel
Law or circuits:
E 1
== Z = -
I total 1 1
—_
Zr 7,
e REVIEW:

e Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be sure
to perform all calculations in complex (not scalar) form! Zro = 1/(1/Z1 + 1/Z2 + . . .
1/Zy)

e Ohm’s Law for AC circuits: E=1Z;I1=E/Z;Z = E/I

e When resistors and inductors are mixed together in parallel circuits (just as in series circuits),
the total impedance will have a phase angle somewhere between 0° and +90°. The circuit
current will have a phase angle somewhere between 0° and -90°.

e Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits: voltage is
uniform throughout the circuit, branch currents add to form the total current, and impedances
diminish (through the reciprocal formula) to form the total impedance.
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3.5 Inductor quirks

In an ideal case, an inductor acts as a purely reactive device. That is, its opposition to AC current
is strictly based on inductive reaction to changes in current, and not electron friction as is the case
with resistive components. However, inductors are not quite so pure in their reactive behavior. To
begin with, they’re made of wire, and we know that all wire possesses some measurable amount
of resistance (unless it’s superconducting wire). This built-in resistance acts as though it were
connected in series with the perfect inductance of the coil, like this:

Equivalent circuit for a real inductor

% Wire resistance
R

3 Ideal inductor
L

Consequently, the impedance of any real inductor will always be a complex combination of
resistance and inductive reactance.

Compounding this problem is something called the skin effect, which is AC’s tendency to flow
through the outer areas of a conductor’s cross-section rather than through the middle. When
electrons flow in a single direction (DC), they use the entire cross-sectional area of the conductor
to move. Electrons switching directions of flow, on the other hand, tend to avoid travel through
the very middle of a conductor, limiting the effective cross-sectional area available. The skin effect
becomes more pronounced at higher frequencies.

Also, the alternating magnetic field of an inductor energized with AC may radiate off into space
as part of an electromagnetic wave, especially at high frequencies. This radiated energy does not
return to the inductor, and so it manifests itself as resistance (power dissipation) in the circuit.

Added to the resistive losses of wire and radiation, there are other effects at work in iron-core
inductors which manifest themselves as additional resistance between the leads. When an inductor
is energized with AC, the alternating magnetic fields produced tend to induce circulating currents
within the iron core known as eddy currents. These electric currents in the iron core have to overcome
the electrical resistance offered by the iron, which is not as good a conductor as copper. Eddy current
losses are primarily counteracted by dividing the iron core up into many thin sheets (laminations),
each one separated from the other by a thin layer of electrically insulating varnish. With the cross-
section of the core divided up into many electrically isolated sections, current cannot circulate within
that cross-sectional area and there will be no (or very little) resistive losses from that effect.

As you might have expected, eddy current losses in metallic inductor cores manifest themselves
in the form of heat. The effect is more pronounced at higher frequencies, and can be so extreme that
it is sometimes exploited in manufacturing processes to heat metal objects! In fact, this process of
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”inductive heating” is often used in high-purity metal foundry operations, where metallic elements
and alloys must be heated in a vacuum environment to avoid contamination by air, and thus where
standard combustion heating technology would be useless. It is a “non-contact” technology, the
heated substance not having to touch the coil(s) producing the magnetic field.

In high-frequency service, eddy currents can even develop within the cross-section of the wire
itself, contributing to additional resistive effects. To counteract this tendency, special wire made of
very fine, individually insulated strands called Litz wire (short for Litzendraht) can be used. The
insulation separating strands from each other prevent eddy currents from circulating through the
whole wire’s cross-sectional area.

Additionally, any magnetic hysteresis that needs to be overcome with every reversal of the in-
ductor’s magnetic field constitutes an expenditure of energy that manifests itself as resistance in the
circuit. Some core materials (such as ferrite) are particularly notorious for their hysteretic effect.
Counteracting this effect is best done by means of proper core material selection and limits on the
peak magnetic field intensity generated with each cycle.

Altogether, the stray resistive properties of a real inductor (wire resistance, radiation losses, eddy
currents, and hysteresis losses) are expressed under the single term of ”effective resistance:”

Equivalent circuit for a real inductor

% "Effective" resistance
R

3 Ideal inductor
L

It is worthy to note that the skin effect and radiation losses apply just as well to straight lengths
of wire in an AC circuit as they do a coiled wire. Usually their combined effect is too small to
notice, but at radio frequencies they can be quite large. A radio transmitter antenna, for example,
is designed with the express purpose of dissipating the greatest amount of energy in the form of
electromagnetic radiation.

Effective resistance in an inductor can be a serious consideration for the AC circuit designer. To
help quantify the relative amount of effective resistance in an inductor, another value exists called
the @ factor, or ”quality factor” which is calculated as follows:

XL
Q = _
R
The symbol ”Q” has nothing to do with electric charge (coulombs), which tends to be confusing.
For some reason, the Powers That Be decided to use the same letter of the alphabet to denote a
totally different quantity.
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The higher the value for ”Q,” the ”purer” the inductor is. Because it’s so easy to add additional
resistance if needed, a high-Q inductor is better than a low-Q inductor for design purposes. An ideal
inductor would have a Q of infinity, with zero effective resistance.

Because inductive reactance (X) varies with frequency, so will Q. However, since the resistive
effects of inductors (wire skin effect, radiation losses, eddy current, and hysteresis) also vary with
frequency, Q does not vary proportionally with reactance. In order for a Q value to have precise
meaning, it must be specified at a particular test frequency.

Stray resistance isn’t the only inductor quirk we need to be aware of. Due to the fact that the
multiple turns of wire comprising inductors are separated from each other by an insulating gap (air,
varnish, or some other kind of electrical insulation), we have the potential for capacitance to develop
between turns. AC capacitance will be explored in the next chapter, but it suffices to say at this
point that it behaves very differently from AC inductance, and therefore further ”taints” the reactive
purity of real inductors.

3.6 More on the ”skin effect”

As previously mentioned, the skin effect is where alternating current tends to avoid travel through the
center of a solid conductor, limiting itself to conduction near the surface. This effectively limits the
cross-sectional conductor area available to carry alternating electron flow, increasing the resistance
of that conductor above what it would normally be for direct current:

Cross-sectional area of a round
conductor available for conducting
DC current

"DC resistance"

Cross-sectional area of the same
conductor available for conducting
low-frequency AC

"AC resistance"
Cross-sectional area of the same

conductor available for conducting
high-frequency AC

"AC resistance"

The electrical resistance of the conductor with all its cross-sectional area in use is known as the
”"DC resistance,” the ” AC resistance” of the same conductor referring to a higher figure resulting
from the skin effect. As you can see, at high frequencies the AC current avoids travel through most
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of the conductor’s cross-sectional area. For the purpose of conducting current, the wire might as
well be hollow!

In some radio applications (antennas, most notably) this effect is exploited. Since radio-frequency
AC currents wouldn’t travel through the middle of a conductor anyway, why not just use hollow
metal rods instead of solid metal wires and save both weight and cost? Most antenna structures are
made of hollow metal tubes for this reason.

The degree to which frequency affects the effective resistance of a wire conductor is impacted by
the gage of that wire. As a rule, large-gage wires exhibit a more pronounced skin effect (change in
resistance from DC) than small-gage wires at any given frequency. The equation for approximating
skin effect at high frequencies (greater than 1 MHz) is as follows:

Rac = (RDC)(k)_\/f_
Where,
Rac = AC resistance at given frequency "f*
Rpc = Resistance at zero frequency (DC)

k = Wire gage factor (see table below)

f = Frequency of AC in MHz (MegaHertz)

The following table gives approximate values of ”k” factor for various round wire sizes:

Gage size k factor
4/0 —-————-——- 124.5
2/0 —————————- 99.0
1/0 -———————-- 88.0
2 ——mmmm 69.8
4 ————————= 55.5
6 ———————————- 47.9
8 ———m———— - 34.8
10 ——-=——=———-- 27.6
14 ————-—-——— 17.6
18 ——————-———- 10.9
22 ——————— - 6.86

For example, a length of number 10 gage wire with a DC end-to-end resistance of 25 2 would
have an AC (effective) resistance of 2.182 k2 at a frequency of 10 MHz:

Rac = (Rpd)(K)V f
Rac = (25 Q)(27.6) \/ 10

Rac = 2.182KQ
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Please remember that this figure is not impedance, and it does not consider any reactive effects,
inductive or capacitive. This is simply an estimated figure of pure resistance for the conductor (that
opposition to the AC flow of electrons which does dissipate power in the form of heat), corrected
for skin effect. Reactance, and the combined effects of reactance and resistance (impedance), are
entirely different matters.



Chapter 4

REACTANCE AND
IMPEDANCE - CAPACITIVE

4.1 AC resistor circuits

@ R

If we were to plot the current and voltage for a very simple AC circuit consisting of a source and
a resistor, it would look something like this:

Time —

Because the resistor allows an amount of current directly proportional to the voltage across it at
all periods of time, the waveform for the current is exactly in phase with the waveform for the voltage.
We can look at any point in time along the horizontal axis of the plot and compare those values of
current and voltage with each other (any ”snapshot” look at the values of a wave are referred to as
instantaneous values, meaning the values at that instant in time). When the instantaneous value for
voltage is zero, the instantaneous current through the resistor is also zero. Likewise, at the moment
in time where the voltage across the resistor is at its positive peak, the current through the resistor
is also at its positive peak, and so on. At any given point in time along the waves, Ohm’s Law holds

69
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true for the instantaneous values of voltage and current.
We can also calculate the power dissipated by this resistor, and plot those values on the same
graph:

Time —

Note that the power is never a negative value. When the current is positive (above the line), the
voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely, when the current
is negative (below the line), the voltage is also negative, which results in a positive value for power
(a negative number multiplied by a negative number equals a positive number). This consistent
?polarity” of power tells us that the resistor is always dissipating power, taking it from the source
and releasing it in the form of heat energy. Whether the current is positive or negative, a resistor
still dissipates energy.

4.2 AC capacitor circuits

Capacitors do not behave the same as resistors. Whereas resistors allow a flow of electrons through
them directly proportional to the voltage drop, capacitors oppose changes in voltage by drawing
or supplying current as they charge or discharge to the new voltage level. The flow of electrons
”through” a capacitor is directly proportional to the rate of change of voltage across the capacitor.
This opposition to voltage change is another form of reactance, but one that is precisely opposite to
the kind exhibited by inductors.

Expressed mathematically, the relationship between the current ”through” the capacitor and
rate of voltage change across the capacitor is as such:

i=C ﬂ
dt
The expression dv/dt is one from calculus, meaning the rate of change of instantaneous voltage
over time, in volts per second. The capacitance (C) is in Farads, and the instantaneous current
(i), of course, is in amps. To show what happens with alternating current, let’s analyze a simple
capacitor circuit:

) =cC
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If we were to plot the current and voltage for this very simple circuit, it would look something
like this:

Remember, the current through a capacitor is a reaction against the change in voltage across it.
Therefore, the instantaneous current is zero whenever the instantaneous voltage is at a peak (zero
change, or level slope, on the voltage sine wave), and the instantaneous current is at a peak wherever
the instantaneous voltage is at maximum change (the points of steepest slope on the voltage wave,
where it crosses the zero line). This results in a voltage wave that is -90° out of phase with the
current wave. Looking at the graph, the current wave seems to have a "head start” on the voltage
wave; the current ”leads” the voltage, and the voltage ”lags” behind the current.

voltage slope =0 voltage slope = max. (+)
current =0 current = max. (+)

| |

T \voltage slope =0
current=0

voltage slope = max. (-)
current = max. (-)

As you might have guessed, the same unusual power wave that we saw with the simple inductor
circuit is present in the simple capacitor circuit, too:
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As with the simple inductor circuit, the 90 degree phase shift between voltage and current results
in a power wave that alternates equally between positive and negative. This means that a capacitor
does not dissipate power as it reacts against changes in voltage; it merely absorbs and releases power,
alternately.

A capacitor’s opposition to change in voltage translates to an opposition to alternating voltage
in general, which is by definition always changing in instantaneous magnitude and direction. For
any given magnitude of AC voltage at a given frequency, a capacitor of given size will ”conduct” a
certain magnitude of AC current. Just as the current through a resistor is a function of the voltage
across the resistor and the resistance offered by the resistor, the AC current through a capacitor is a
function of the AC voltage across it, and the reactance offered by the capacitor. As with inductors,
the reactance of a capacitor is expressed in ohms and symbolized by the letter X (or X¢ to be more
specific).

Since capacitors ”conduct” current in proportion to the rate of voltage change, they will pass
more current for faster-changing voltages (as they charge and discharge to the same voltage peaks
in less time), and less current for slower-changing voltages. What this means is that reactance in
ohms for any capacitor is inversely proportional to the frequency of the alternating current:

_ 1
2rfC

c

For a 100 uF capacitor:

Frequency (Hertz) Reactance (Ohms)
I e 1 oes8 |
Y
e T s

Please note that the relationship of capacitive reactance to frequency is exactly opposite from
that of inductive reactance. Capacitive reactance (in ohms) decreases with increasing AC frequency.
Conversely, inductive reactance (in ohms) increases with increasing AC frequency. Inductors op-
pose faster changing currents by producing greater voltage drops; capacitors oppose faster changing
voltage drops by allowing greater currents.

AC current in a simple capacitive circuit is equal to the voltage (in volts) divided by the capacitive
reactance (in ohms), just as AC or DC current in a simple resistive circuit is equal to the voltage
(in volts) divided by the resistance (in ohms).
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10V _
soHz (V) C == 100uF

Xc = 265258 Q

10V
26.5258 Q

I =03770 A

However, we need to keep in mind that voltage and current are not in phase here. As was shown
earlier, the current has a phase shift of +90 with respect to the voltage. If we represent these phase
angles of voltage and current mathematically, we can calculate the phase angle of the inductor’s
reactive opposition to current.

Opposition = M
Current
(o}
Opposition = 0vaoo

0.3770 A O 90°
Opposition = 26.5258 Q [J -90°

For a capacitor:

90° o
-90
f

- Q°
E Opposition

(Xc)
Mathematically, we say that the phase angle of a capacitor’s opposition to current is -90°, meaning

that a capacitor’s opposition to current is a negative imaginary quantity. This phase angle of reactive
opposition to current becomes critically important in circuit analysis, especially for complex AC
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circuits where reactance and resistance interact. It will prove beneficial to represent any component’s
opposition to current in terms of complex numbers, and not just scalar quantities of resistance and
reactance.

e REVIEW:

e Capacitive reactance is the opposition that a capacitor offers to alternating current due to its
phase-shifted storage and release of energy in its electric field. Reactance is symbolized by the
capital letter ”X” and is measured in ohms just like resistance (R).

¢ Capacitive reactance can be calculated using this formula: X¢ = 1/(2#fC)

e Capacitive reactance decreases with increasing frequency. In other words, the higher the fre-
quency, the less it opposes (the more it ”conducts”) the AC flow of electrons.

4.3 Series resistor-capacitor circuits

In the last section, we learned what would happen in simple resistor-only and capacitor-only AC
circuits. Now we will combine the two components together in series form and investigate the effects.
Take this circuit as an example to analyze:

R
A%
5Q

10V |
ooy ") C=— 100 uF

The resistor will offer 5 2 of resistance to AC current regardless of frequency, while the capacitor
will offer 26.5258 ) of reactance to AC current at 60 Hz. Because the resistor’s resistance is a real
number (5 Q Z 0°, or 5 + jO ), and the capacitor’s reactance is an imaginary number (26.5258 Q /
-90°, or 0 - j26.5258 ), the combined effect of the two components will be an opposition to current
equal to the complex sum of the two numbers. The term for this complex opposition to current
is impedance, its symbol is Z, and it is also expressed in the unit of ohms, just like resistance and
reactance. In the above example, the total circuit impedance is:

Za = (5 Q resistance) + (26.5258 Q capacitive reactance)

Zioa = 5 Q (R) + 265258 Q (X)

Ziwa = (5Q 0 0° + (26,5258 Q O -90°)
or

(5+j0Q) + (0- j26.5258 Q)

Zwy=5-]265258Q  or 26.993Q O -79.325°
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Impedance is related to voltage and current just as you might expect, in a manner similar to
resistance in Ohm’s Law:

Ohm'’s Law for AC circuits:

All quantities expressed in
complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to the
flow of electrons than simple resistance is. Any resistance and any reactance, separately or in
combination (series/parallel), can be and should be represented as a single impedance.

To calculate current in the above circuit, we first need to give a phase angle reference for the
voltage source, which is generally assumed to be zero. (The phase angles of resistive and capacitive
impedance are always 0° and -90°, respectively, regardless of the given phase angles for voltage or
current).

|:E
z

ovooee
26.933Q [0 -79.325°

| =370.5mA [ 79.325°

As with the purely capacitive circuit, the current wave is leading the voltage wave (of the source),
although this time the difference is 79.325° instead of a full 90°.

phase shift =
- <« 79.325 degrees

As we learned in the AC inductance chapter, the ”table” method of organizing circuit quantities
is a very useful tool for AC analysis just as it is for DC analysis. Let’s place out known figures for
this series circuit into a table and continue the analysis using this tool:
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C

Tota

10 +j0
1000°

68.623m +j364.06m
370.5m 00 79.325°

5+j0
50 0°

0-j26.5258
26.5258 0 -90°

5-j26.5258
26.993 0 -79.325°

Current in a series circuit is shared equally by all components, so the figures placed in the ” Total”
column for current can be distributed to all other columns as well:

Volts

Amps

Ohms

R C Total
10+j0
E
100 0° Volts
| 68.623m + j364.06m |68.623m + j364.06m |68.623m + j364.06m Amps
370.5m O 79.325° 370.5m O 79.325° 370.5m 0 79.325° -
7 5+j0 0-j26.5258 5-j26.5258 Ohms
500° 26.5258 O -90° 26.993 0 -79.325°

Continuing with our analysis, we can apply Ohm’s Law (E=IR) vertically to determine voltage

Rule of series

circuits:

loa = lr=lc

across the resistor and capacitor:

R C Total
£ | 34311m+j18203 | 96569-1.8203 10+j0 Vol
1.8523[179.325° | 9.8269 01 -10.675° 100 0° olts
| |68:623m+]364.06m [68.623m + j364.06m |68.623m +]364.06m |\
3705m [0 79.325° | 370.5m [ 79.325° | 370.5m [ 79.325°
. 5+j0 0-j26.5258 5-26.5258 ohms
500° 26.5258 [1 -90° 26.993 [1 -79.325°
Ohm's Ohm's
Law Law
E=1Z E=1Z

Notice how the voltage across the resistor has the exact same phase angle as the current through
it, telling us that E and T are in phase (for the resistor only). The voltage across the capacitor has
a phase angle of -10.675°, exactly 90° less than the phase angle of the circuit current. This tells us
that the capacitor’s voltage and current are still 90° out of phase with each other.

Let’s check our calculations with SPICE:
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1 A2
50
10V 1
Q) C == 100uF
0 0

ac r-c circuit

vl 1 0 ac 10 sin

rl1 125

cl 2 0 100u

.ac lin 1 60 60

.print ac v(1,2) v(2,0) i(vl)
.print ac vp(1,2) vp(2,0) ip(vl)

.end

freq v(1,2) v(2) i(vl)
6.000E+01 1.852E+00 9.827E+00 3.705E-01
freq vp(1,2) vp(2) ip(vl)
6.000E+01 7.933E+01 -1.067E+01 -1.007E+02

Interpreted SPICE results
Er=1.852V [0 79.33°

Ec.=9.827V 00 -10.67°

| =370.5mA [ -100.7°

Once again, SPICE confusingly prints the current phase angle at a value equal to the real phase
angle plus 180° (or minus 180°). However, it’s a simple matter to correct this figure and check to
see if our work is correct. In this case, the -100.7° output by SPICE for current phase angle equates
to a positive 79.3°, which does correspond to our previously calculated figure of 79.325°.

Again, it must be emphasized that the calculated figures corresponding to real-life voltage and
current measurements are those in polar form, not rectangular form! For example, if we were to
actually build this series resistor-capacitor circuit and measure voltage across the resistor, our volt-
meter would indicate 1.8523 volts, not 343.11 millivolts (real rectangular) or 1.8203 volts (imaginary
rectangular). Real instruments connected to real circuits provide indications corresponding to the
vector length (magnitude) of the calculated figures. While the rectangular form of complex number
notation is useful for performing addition and subtraction, it is a more abstract form of notation
than polar, which alone has direct correspondence to true measurements.

e REVIEW:

e Impedance is the total measure of opposition to electric current and is the complex (vector)
sum of ("real”) resistance and (”imaginary”) reactance.
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Impedances (Z) are managed just like resistances (R) in series circuit analysis: series impedances
add to form the total impedance. Just be sure to perform all calculations in complex (not
scalar) form! Zrotas =71 + Za + . . . Zp,

Please note that impedances always add in series, regardless of what type of components
comprise the impedances. That is, resistive impedance, inductive impedance, and capacitive
impedance are to be treated the same way mathematically.

A purely resistive impedance will always have a phase angle of exactly 0° (Zg = R Q / 0°).

A purely capacitive impedance will always have a phase angle of exactly -90° (Z¢g = X¢ Q /
-90°).

Ohm’s Law for AC circuits: E=1Z ;1=E/Z;Z = E/I

When resistors and capacitors are mixed together in circuits, the total impedance will have a
phase angle somewhere between 0° and -90°.

Series AC circuits exhibit the same fundamental properties as series DC circuits: current is
uniform throughout the circuit, voltage drops add to form the total voltage, and impedances
add to form the total impedance.

4.4 Parallel resistor-capacitor circuits

Using the same value components in our series example circuit, we will connect them in parallel and
see what happens:

60 Hz

10V RI5Q C—=— 100pF

Because the power source has the same frequency as the series example circuit, and the resistor

and capacitor both have the same values of resistance and capacitance, respectively, they must also
have the same values of impedance. So, we can begin our analysis table with the same ”given”

values:
R C Total
10+j0
E
100 0° Volts
Amps
. 5+j0 0-j26.5258 ohms
500° 26.5258 [J -90°

This being a parallel circuit now, we know that voltage is shared equally by all components, so

we can place the figure for total voltage (10 volts / 0°) in all the columns:
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R C Total
10+j0 10+j0 10 +j0
E
1000° 1000° 1000°
|
7 5+j0 0-j26.5258
500° 26.5258 O -90°

Rule of parallel
circuits:

Eom =Er=Ec

79

Volts

Amps

Ohms

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns in the table, calculating current
through the resistor and current through the capacitor:

R C Total
10+j0 10+j0 10+j0
E
1000° 1000° 1000°
| 2+j0 0+j376.99m
200° 376.99m O 90°
7 5+j0 0-j26.5258
500° 26.5258 O -90°
Ohm'’s Ohm'’s
Law Law
-E -E
Z Z

Volts

Amps

Ohms

Just as with DC circuits, branch currents in a parallel AC circuit add up to form the total current
(Kirchhofl’s Current Law again):

R C Total
E 10+j0 10+j0 10+j0
1000° 1000° 1000°
| 2+j0 0 +j376.99m 2+j376.99m
200° 376.99m O 90° 2.0352 0 10.675°
7 5+j0 0-j26.5258
500° 26.5258 O -90°

Rule of parallel

circuits:

loa = Ir + 1

Volts

Amps

Ohms

Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the ” Total”
column. As we saw in the AC inductance chapter, parallel impedance can also be calculated by using
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a reciprocal formula identical to that used in calculating parallel resistances. It is noteworthy to
mention that this parallel impedance rule holds true regardless of the kind of impedances placed in
parallel. In other words, it doesn’t matter if we’re calculating a circuit composed of parallel resistors,
parallel inductors, parallel capacitors, or some combination thereof: in the form of impedances (Z),
all the terms are common and can be applied uniformly to the same formula. Once again, the
parallel impedance formula looks like this:

1

1 1 1
e+ + .., =

VAR S Z,

The only drawback to using this equation is the significant amount of work required to work it
out, especially without the assistance of a calculator capable of manipulating complex quantities.
Regardless of how we calculate total impedance for our parallel circuit (either Ohm’s Law or the
reciprocal formula), we will arrive at the same figure:

Zpaalle =

R C Total
E 10+j0 10+j0 10+j0 Vol
100 0° 100 0° 100 0° olts
2+j0 0 +j376.99m 2 +376.99m
| . o o Amps
200 376.99m [J 90 2.0352 [J 10.675
7 5+j0 0-j26.5258 4.8284 - j910.14m Ohms
500° 26.5258 O -90° 491350 -10.675°
Ohm's . Rule of parallel
Law circuits:
_E 1
Z= T Ziga = 1
= L=
R ZC
¢ REVIEW:

e Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be sure
to perform all calculations in complex (not scalar) form! Zyote = 1/(1/Z1 + 1/Z2 + . . .
1/Z,)

e Ohm’s Law for AC circuits: E=12 ;1 =E/Z;Z = E/I

e When resistors and capacitors are mixed together in parallel circuits (just as in series circuits),

the total impedance will have a phase angle somewhere between 0° and -90°. The circuit
current will have a phase angle somewhere between 0° and +90°.

e Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits: voltage is
uniform throughout the circuit, branch currents add to form the total current, and impedances
diminish (through the reciprocal formula) to form the total impedance.
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4.5 Capacitor quirks

As with inductors, the ideal capacitor is a purely reactive device, containing absolutely zero resistive
(power dissipative) effects. In the real world, of course, nothing is so perfect. However, capacitors
have the virtue of generally being purer reactive components than inductors. It is a lot easier to
design and construct a capacitor with low internal series resistance than it is to do the same with
an inductor. The practical result of this is that real capacitors typically have impedance phase
angles more closely approaching 90° (actually, -90°) than inductors. Consequently, they will tend
to dissipate less power than an equivalent inductor.

Capacitors also tend to be smaller and lighter weight than their equivalent inductor counterparts,
and since their electric fields are almost totally contained between their plates (unlike inductors,
whose magnetic fields naturally tend to extend beyond the dimensions of the core), they are less
prone to transmitting or receiving electromagnetic ”"noise” to/from other components. For these
reasons, circuit designers tend to favor capacitors over inductors wherever a design permits either
alternative.

Capacitors with significant resistive effects are said to be lossy, in reference to their tendency to
dissipate (”lose”) power like a resistor. The source of capacitor loss is usually the dielectric material
rather than any wire resistance, as wire length in a capacitor is very minimal.

Dielectric materials tend to react to changing electric fields by producing heat. This heating
effect represents a loss in power, and is equivalent to resistance in the circuit. The effect is more
pronounced at higher frequencies and in fact can be so extreme that it is sometimes exploited in
manufacturing processes to heat insulating materials like plastic! The plastic object to be heated is
placed between two metal plates, connected to a source of high-frequency AC voltage. Temperature
is controlled by varying the voltage or frequency of the source, and the plates never have to contact
the object being heated.

This effect is undesirable for capacitors where we expect the component to behave as a purely
reactive circuit element. One of the ways to mitigate the effect of dielectric ”loss” is to choose a
dielectric material less susceptible to the effect. Not all dielectric materials are equally ”lossy.” A
relative scale of dielectric loss from least to greatest is given here:

Vacuum ----=-===———--- (Low Loss)
Air

Polystyrene

Mica

Glass

Low-K ceramic

Plastic film (Mylar)

Paper

High-K ceramic

Aluminum oxide

Tantalum pentoxide --- (High Loss)

Dielectric resistivity manifests itself both as a series and a parallel resistance with the pure
capacitance:
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Equivalent circuit for a real capacitor

Ideal L R
capacitor . | parallel

Fortunately, these stray resistances are usually of modest impact (low series resistance and high
parallel resistance), much less significant than the stray resistances present in an average inductor.

Electrolytic capacitors, known for their relatively high capacitance and low working voltage, are
also known for their notorious lossiness, due to both the characteristics of the microscopically thin
dielectric film and the electrolyte paste. Unless specially made for AC service, electrolytic capacitors
should never be used with AC unless it is mixed (biased) with a constant DC voltage preventing
the capacitor from ever being subjected to reverse voltage. Even then, their resistive characteristics
may be too severe a shortcoming for the application anyway.



Chapter 5

REACTANCE AND
IMPEDANCE - R, L, AND C

5.1 Series R, L, and C

Let’s take the following example circuit and analyze it:

R
VWA
250 Q
120V L§ 650 mH
60 Hz /\D
C
||
[l
1.5uF

The first step is to determine the reactances (in ohms) for the inductor and the capacitor.

83
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X, = 2rfL

X, = (2)(1)(60 Hz)(650 mH)

X, =245.04 Q
1
X~ =
¢ onfc
~ 1
Xe=
(2)(mM(60 HZ)(1.5 puF)

Xc=1.7684kQ

The next step is to express all resistances and reactances in a mathematically common form:
impedance. Remember that an inductive reactance translates into a positive imaginary impedance
(or an impedance at +90°), while a capacitive reactance translates into a negative imaginary
impedance (impedance at -90°). Resistance, of course, is still regarded as a purely ”real” impedance
(polar angle of 0°):

Zg=250+j0Q or 250Q00°

Z, =0+j245.04Q or 245.04Q 0 90°

Z.=0-j1.7684k Q or 1.7684kQ [ -90°

Zq
MV
250Q 00
120V z 3 245.04 Q [ 90°
60 Hz @ -
ZC
I

Il
1.7684 kQ [0 -90°

Now, with all quantities of opposition to electric current expressed in a common, complex number
format (as impedances, and not as resistances or reactances), they can be handled in the same way
as plain resistances in a DC circuit. This is an ideal time to draw up an analysis table for this circuit

and insert all the "given” figures (total voltage, and the impedances of the resistor, inductor, and
capacitor).
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R L C Total
120 +j0
E
1200 0° Volts
| Amps
7 250+j0 0+j245.04 0-j1.7684k Ohms
2500 0° 254.04 0 90° 1.7684k O -90°

Unless otherwise specified, the source voltage will be our reference for phase shift, and so will
be written at an angle of 0°. Remember that there is no such thing as an ”absolute” angle of phase
shift for a voltage or current, since it’s always a quantity relative to another waveform. Phase angles
for impedance, however (like those of the resistor, inductor, and capacitor), are known absolutely,
because the phase relationships between voltage and current at each component are absolutely
defined.

Notice that I'm assuming a perfectly reactive inductor and capacitor, with impedance phase
angles of exactly +90 and -90°, respectively. Although real components won’t be perfect in this
regard, they should be fairly close. For simplicity, I'll assume perfectly reactive inductors and
capacitors from now on in my example calculations except where noted otherwise.

Since the above example circuit is a series circuit, we know that the total circuit impedance is
equal to the sum of the individuals, so:

LZiga =Lt Z +Z¢
Zia =(250+j0 Q) + (0 +)245.04 Q) + (0 - j1.7684k Q)

Ziow = 250 - j1.5233k Q or 1.5437 kQ [ -80.680°

Inserting this figure for total impedance into our table:

R L C Total
120 +j0
E
1200 0° Volts
| Amps
z 250 +j0 0+ j245.04 0-j1.7684k 250 - j1.5233k Ohms
2500 0° 254.04 0 90° 1.7684k O -90° 1.5437k O -80.680°

Rule of series
circuits:

Zia =ZrtZ +Z¢

We can now apply Ohm’s Law (I=E/R) vertically in the ”Total” column to find total current
for this series circuit:
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R L c Total
120+j0
1200 0° Volts
12.589m + 76.708m
Amps
77.734m O 80.680°
250 +j0 0+ j245.04 0-j1.7684k 250 - j1.5233k Ohms
2500 0° 254.04 0 90° 1.7684k O -90° 1.5437k O -80.680°

Being a series circuit, current must be equal through all components. Thus, we can take the

figure obtained for total current and distribute it to each of the other columns:

R L c Total
120+0
1200 0° Volts
12580m + 76.708m | 12.580m + 76.708m | 12.560m + 76.708m | 12.580m + 76.708m |\
77.734m 0 80.680° | 77.734m [180.680° | 77.734m 00 80.680° | 77.734m 00 80.680°
250 +0 0 +245.04 0-j1.7684k 250 - ]1.5233K Ohms
250 0 0° 254,04 0 90° 17684k 0-90° | 1.5437k [ -80.680°

Rule of series
circuits:

lota = lr =1L = ¢

in the table, to determine voltage drops:

Now we’re prepared to apply Ohm’s Law (E=IZ) to each of the individual component columns

R L c Total
3.1472+]19.177 | -18.797+]3.0848 | 135.65-]22.262 120 +j0 Vol
19.434180.680° | 19.0480170.68° | 137.46 0 -9.3199° 1200 0° olts

12580m + 76.708m | 12.580m + 76.708m | 12.580m + 76.708m | 12580m + 76.708m |

77.734m 0 80.680° | 77.734m 00 80.680° | 77.734m 0 80.680° | 77.734m O 80.680°
250 +j0 0 +245.04 0-j1.7684k 250 - j1.5233k ohms
2500 0° 254.04 0 90° 17684k 0-90° | 1.5437k [ -80.680°
Ohm's Ohm's Ohm's
Law Law Law
E=IZ E=IZ E=IZ

Notice something strange here: although our supply voltage is only 120 volts, the voltage across
the capacitor is 137.46 volts! How can this be? The answer lies in the interaction between the
inductive and capacitive reactances. Expressed as impedances, we can see that the inductor opposes
current in a manner precisely opposite that of the capacitor. Expressed in rectangular form, the
inductor’s impedance has a positive imaginary term and the capacitor has a negative imaginary
term. When these two contrary impedances are added (in series), they tend to cancel each other
out! Although they’re still added together to produce a sum, that sum is actually less than either
of the individual (capacitive or inductive) impedances alone. It is analogous to adding together
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a positive and a negative (scalar) number: the sum is a quantity less than either one’s individual
absolute value.

If the total impedance in a series circuit with both inductive and capacitive elements is less than
the impedance of either element separately, then the total current in that circuit must be greater
than what it would be with only the inductive or only the capacitive elements there. With this
abnormally high current through each of the components, voltages greater than the source voltage
may be obtained across some of the individual components! Further consequences of inductors’ and
capacitors’ opposite reactances in the same circuit will be explored in the next chapter.

Once you’ve mastered the technique of reducing all component values to impedances (Z), analyz-
ing any AC circuit is only about as difficult as analyzing any DC circuit, except that the quantities
dealt with are vector instead of scalar. With the exception of equations dealing with power (P),
equations in AC circuits are the same as those in DC circuits, using impedances (Z) instead of
resistances (R). Ohm’s Law (E=IZ) still holds true, and so do Kirchhoff’s Voltage and Current
Laws.

To demonstrate Kirchhoff’s Voltage Law in an AC circuit, we can look at the answers we derived
for component voltage drops in the last circuit. KVL tells us that the algebraic sum of the voltage
drops across the resistor, inductor, and capacitor should equal the applied voltage from the source.
Even though this may not look like it is true at first sight, a bit of complex number addition proves
otherwise:

Ex + E,_ +Ec should equal Ey

3.1472+j19.177V  Eq
-18.797 +j3.0848V  E,
+ 13565-j22.262V  E

120+j0 V i

Aside from a bit of rounding error, the sum of these voltage drops does equal 120 volts. Performed
on a calculator (preserving all digits), the answer you will receive should be ezactly 120 + jO volts.
We can also use SPICE to verify our figures for this circuit:

T
250 Q
120V
60Hz/\D L§650mH
C
||
0 [ 3
15 pF

ac r-l-c circuit
vl 1 0 ac 120 sin
rl 1 2 250
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11 2 3 650m

cl 30 1.5u

.ac lin 1 60 60

.print ac v(1,2) v(2,3) v(3,0) i(vl)
.print ac vp(1,2) vp(2,3) vp(3,0) ip(vl)

.end

freq v(1,2) v(2,3) v(3) i(vl)
6.000E+01 1.943E+01 1.905E+01 1.375E+02 7.773E-02
freq vp(1,2) vp(2,3) vp(3) ip(v1)

6.000E+01 8.068E+01 1.707E+02 -9.320E+00 -9.932E+01

Interpreted SPICE results

Er =19.43V O 80.68°
E,=19.05V O 170.7°
Ec=137.5V 0 -9.320°

| =77.73mA [0 -99.32° (actual phase angle = 80.68°)

The SPICE simulation shows our hand-calculated results to be accurate.

As you can see, there is little difference between AC circuit analysis and DC circuit analysis,
except that all quantities of voltage, current, and resistance (actually, impedance) must be handled
in complex rather than scalar form so as to account for phase angle. This is good, since it means all
you’ve learned about DC electric circuits applies to what you’re learning here. The only exception
to this consistency is the calculation of power, which is so unique that it deserves a chapter devoted
to that subject alone.

e REVIEW:
e Impedances of any kind add in series: Zrotqr = Z1 + Zo + . . . Zyp,

e Although impedances add in series, the total impedance for a circuit containing both induc-
tance and capacitance may be less than one or more of the individual impedances, because
series inductive and capacitive impedances tend to cancel each other out. This may lead to
voltage drops across components exceeding the supply voltage!

e All rules and laws of DC circuits apply to AC circuits, so long as values are expressed in
complex form rather than scalar. The only exception to this principle is the calculation of
power, which is very different for AC.

5.2 Parallel R, L, and C

We can take the same components from the series circuit and rearrange them into a parallel config-
uration for an easy example circuit:
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120V

R L C
250 Q 650mH —= 15uF
60 Hz /\D % H

The fact that these components are connected in parallel instead of series now has absolutely no
effect on their individual impedances. So long as the power supply is the same frequency as before,
the inductive and capacitive reactances will not have changed at all:

120V () o

60 Hz

Zn % z,

250Q 0 0° 1.7684 kQ 0 -90°
245.04 Q 00 90°

With all component values expressed as impedances (Z), we can set up an analysis table and
proceed as in the last example problem, except this time following the rules of parallel circuits
instead of series:

R L C Total
120 +j0
E
1200 0° Volts
| Amps
7 250+j0 0+j245.04 0-j1.7684k Ohms
2500 0° 254.04 0 90° 1.7684k O -90°

Knowing that voltage is shared equally by all components in a parallel circuit, we can transfer

the figure for total voltage to all component columns in the table:

R L c Total
£ 120+j0 120+j0 120+j0 120 +j0
1200 0° 1200 0° 1200 0° 1200 0°
[
5 250 +j0 0 +j245.04 0-j1.7684K
2500 0° 254.04 0 90° 1.7684k O -90°

Now, we can apply Ohm’s Law (I=E/Z) vertically in each column to determine current through

each component:

Rule of parallel
circuits:

Eota =Er=EL = Ec

Volts

Amps

Ohms
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R L C Total
E 120 +j0 120 +j0 120 +j0 120 +j0 Vol
1200 0° 1200 0° 1200 0° 1200 0° olts
| 480m +j0 0-j489.71m 0+j67.858m Amps
4800 0° 489.71m 0O -90° 67.858m 0 90°
. 250 +jO 0+j245.04 0-j1.7684k Ohms
2500 0° 254.04 0 90° 1.7684k O -90°
Ohm's Ohm's Ohm's
Law Law Law
| = E | = E | = E
Z Z Z

There are two strategies for calculating total current and total impedance. First, we could
calculate total impedance from all the individual impedances in parallel (Zgotqr = 1/(1/Zr + 1/ZL
+ 1/Z¢), and then calculate total current by dividing source voltage by total impedance (I=E/Z).
However, working through the parallel impedance equation with complex numbers is no easy task,
with all the reciprocations (1/Z). This is especially true if you're unfortunate enough not to have
a calculator that handles complex numbers and are forced to do it all by hand (reciprocate the
individual Z’s in polar form, then convert them all to rectangular form for addition, then convert
back to polar form for the final inversion, then invert). The second way to calculate total current
and total impedance is to add up all the branch currents to arrive at total current (total current in
a parallel circuit — AC or DC - is equal to the sum of the branch currents), then use Ohm’s Law to
determine total impedance from total voltage and total current (Z=E/I).

R L C Tota
120 +jO 120 +jO 120 +jO 120 +j0
E Volts
1200 0° 1200 0° 1200 0° 1200 0°
| 480m + jO 0-j489.71m 0+ j67.858m 480m - j421.85m Amps
4800 0° 489.71m O -90° 67.858m 0 90° 639.03m O -41.311°
250 +j0 0+j245.04 0-j1.7684k 141.05 +j123.96
z Ohms
2500 0° 254.04 0 90° 1.7684k 0 -90° 187.79 0 41.311°

Either method, performed properly, will provide the correct answers. Let’s try analyzing this

circuit with SPICE and see what happens:



5.2. PARALLEL R, L, AND C

battery symbols are "dummy"
voltage sources for SPICE o
use as current measurement
points.All are set to O volts.

\/m

2 2 2 2
1 Bl 1
— Vi = Vi —
Vi — 4
T 3 %Rbogus 6

1 5

120V @ R%zsocz "§ 650 mH = 1.5pF

ac r-1l-c circuit

vl 1 0 ac 120 sin

vi 1l 2ac 0

vir 2 3 ac 0

vil 2 4 ac O

rbogus 4 5 le-12

vic 2 6 ac 0

rl 3 0 250

11 5 0 650m

cl 60 1.5u

.ac lin 1 60 60

.print ac i(vi) i(vir) i(vil) i(vic)
.print ac ip(vi) ip(vir) ip(vil) ip(vic)
.end

freq i(vi) i(vir) i(vil) i(vic)
6.000E+01 6.390E-01 4.800E-01 4.897E-01 6.786E-02
freq ip(vi) ip(vir) ip(vil) ip(vic)
6.000E+01 -4.131E+01 0.000E+00 -9.000E+01  9.000E+01
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Interpreted SPICE results

Itotal = 6390 mA |:| '41310
lx =480 mA [0 0°
|, =489.7mA O -90°

lc = 67.86 mA O 90°

It took a little bit of trickery to get SPICE working as we would like on this circuit (installing
”dummy” voltage sources in each branch to obtain current figures and installing the ”dummy”
resistor in the inductor branch to prevent a direct inductor-to-voltage source loop, which SPICE
cannot tolerate), but we did get the proper readings. Even more than that, by installing the dummy
voltage sources (current meters) in the proper directions, we were able to avoid that idiosyncrasy of
SPICE of printing current figures 180° out of phase. This way, our current phase readings came out
to exactly match our hand calculations.

5.3 Series-parallel R, L, and C

Now that we’ve seen how series and parallel AC circuit analysis is not fundamentally different than
DC circuit analysis, it should come as no surprise that series-parallel analysis would be the same as
well, just using complex numbers instead of scalar to represent voltage, current, and impedance.

Take this series-parallel circuit for example:

120V (A, R<470Q
conz Q) C, ==15uF 2

The first order of business, as usual, is to determine values of impedance (Z) for all components
based on the frequency of the AC power source. To do this, we need to first determine values of
reactance (X) for all inductors and capacitors, then convert reactance (X) and resistance (R) figures
into proper impedance (Z) form:



5.3. SERIES-PARALLEL R, L, AND C

Reactances and Resistances:

Xy = X, = 2mfL
21iC,

Xy = 1 X, = (2)(1(60 Hz)(650 mH)
(2)(1)(60 H2)(4.7 pF)

X1 =564.38 Q X =245.04Q

1
Xy =
N ToN
1

X = R=470Q
(2)(m)(60 HZ)(15 pF)

X = 1.7684 kQ

Zc,=0-j564.38Q or 564.38Q [0 -90°

Z, =0+j24504Q or 245.04Q 0 90°

Zc,=0-j1.7684k Q or 1.7684kQ [1-90°

Zg=470+j0Q or 470Q00°

Now we can set up the initial values in our table:

c L c, R Total
£ 120 +j0
1200 0°
5 0-j564.38 0+)245.04 0-j1.7684k 470 +j0
564.38 [ -90° 245.04 0 90° 1.7684k O -90° 4700 0°

Volts

Amps

Ohms

93

Being a series-parallel combination circuit, we must reduce it to a total impedance in more than
one step. The first step is to combine L and C, as a series combination of impedances, by adding
their impedances together. Then, that impedance will be combined in parallel with the impedance
of the resistor, to arrive at another combination of impedances. Finally, that quantity will be added
to the impedance of C; to arrive at the total impedance.

In order that our table may follow all these steps, it will be necessary to add additional columns
to it so that each step may be represented. Adding more columns horizontally to the table shown
above would be impractical for formatting reasons, so I will place a new row of columns underneath,
each column designated by its respective component combination:
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Total
L--C, R/ (L--Cy) C,—-[RII(L-C)]
E Volts
| Amps
z Ohms

Calculating these new (combination) impedances will require complex addition for series com-
binations, and the ”reciprocal” formula for complex impedances in parallel. This time, there is no
avoidance of the reciprocal formula: the required figures can be arrived at no other way!

Total
L--C, R/ (L--Cy C,—-[RI/(L-C)]
120 +j0
E
1200 0° Volts
| Amps
7 0-j1.5233k 429.15-j132.41 429.15 - |696.79 Ohms
1.5233k O -90° 449,11 0 -17.147° 818.34 0 -58.371°
Rule of series Rule of series
circuits: circuits:
2 =2 t 2, Ziga = Zc1 + Zrica)
Rule of parallel
circuits:
1
Z [ —
R//(L--C2) _l . 1
ZR ZL——CZ

Seeing as how our second table contains a column for ” Total,” we can safely discard that column
from the first table. This gives us one table with four columns and another table with three columns.

Now that we know the total impedance (818.34 Q / -58.371°) and the total voltage (120 volts
£ 0°), we can apply Ohm’s Law (I=E/Z) vertically in the ”Total” column to arrive at a figure for
total current:



