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Preface

Why does a beam of light change its direction
when passing through the interface between two
media? Why does the setting sun appear oblate
on the horizon? What causes mirages? Why
does a prism disperse sunlight into different
colours? How can one calculate the angular di-
mensions of a rainbow? Why do distant objects
appear close when we view them through a tele-
scope? What is the structure of the human eye?
Why does a light ray get broken into two in a
crystal? Can the plane of the polarization of a
ray be turned? Can light rays be bent at will?
Is the refractive index controllable?

This book will give the reader answers to all
these questions. He will get to know how the
law of refraction was discovered, how Newton’s
theory of the refraction of light in the atmo-
sphere was nearly lost forever, how Newton’s
experiments changed radically the old ideas con-
cerning the origin of colours, how the telescope
was invented, how it took twenty centuries to
understand the anatomy of human vision, and
how difficult it was to discover the polarization
of light.

To make the historical and the physical aspects
of the book more convincing, the authors have
introduced a number of problems and their
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iled solutions, geometrical. constructions,
gitdal:)ptical diagrams of some 11}struments atnd
devices. No doubt, the reader will get a bei er
understanding of some excerpts from the tc as-
sics of physical optics (for .examplez Ngw ofrtli
«Optics” or Huygens' “Treatise on Light )fad.e_
they have been illustrated with the help of dia
grams, constructions and concrete problems. tod
Thus, as he explores the world _0f r.efra}(;.e_
rays, the reader will be able to fam1l1ar‘1zeb im
self not only with the physics of the poplcsf eln%
considered but also with -the evolution o so'ml
of the concepts of physics and thelr_practlcad
applications to problems, GOIlStI‘l}CthDS tznt
optical schemes. It is the authors hope t a_
this journey will be both instructive and enjoy
ab’lI?l.le authors are greatly obl.ig'ed to Professgr
V. A. Fabrikant for his editing and forthe

many valuable suggestions he made.

L. Tarasov
A. Tarasova
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Chapter One

Light rays at the interface
between two media

A Ring at the Bottom of a Water-Filled Vessel.
Take a shallow vessel with opaque walls; a mug,
a tin or a pan will be suitable. Place a ring
at the bottom of the vessel and look at it at an
angle so that you can see a part of the bottom

R\‘

I

Fig. 1.1.

without seeing the ring. Ask somebody to fill
the vessel with water without moving it. When
the level of the water has reached a certain
height, you will see the ring lying at the bottom.
This unsophisticated experiment is an invari-
able success. It illustrates in a spectacular
way the refraction of light rays at the interface
between water and air (Fig. 1.1). s
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The experiment described- above has been
known for a long time. In 1557 a translation
of Euclid’s “Catoptrics” (3rd century B. C.)
was published in Paris. It contains the follow-
ing statement: “If an object is placed at the
bottom of a vessel so that the object cannot
be seen, it will come back into view if the
vessel is filled with water, the distance re-
maining unchanged”. True, the experiment
described has no direct bearing on the ques-
tion dealt with in Euclid’s book. The latter
is devoted to catoptrics, which was at that
time the name of the branch of optics referring
to the reflection of light, whereas the refrac-
tion of light was studied by dioptrics. The expe-
riment with a ring at the bottom of a vessel is
commonly supposed to have been added by the
translator of the book. But still, there is not a
shade of doubt that the ex periment is about twenty
centuries old. It is described in other ancient
sources, particularly, in Cleomedes’ book (50
A. D.) “The Circular Theory of the Heavenly
Bodies”. Cleomedes wrote: “Is it mnot pos-
sible that a light ray passing through humid
layers of air should curve...? This would be simi-
lar to the experiment with a ring placed at the
bottom of a vessel, which cannot be seen in an
empty vessel, but becomes visible after the
vessel is filled with water.”

Consider quite a modern problem using the ancient
experiment. In a cylindrical vessel whose height equals the
diameter of its bottom, there is a disc in the centre of the
bottom whose diameter is half that of the bottom of the
vessel. The observer can just see the edge of the bottom
(naturally, he cannot see the disc lying at the bottom),
How much of the vessel’s volume has to be filled with water
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so that the observer can just see the edge of the disc? The
refractive index of water n = 4/3.

Designate the diameter of the bottom of the vessel
as D, and the level of the water in the vessel at which
the observer can see the edge of the disc as H (Fig. 1.2).

W
A B c

a

a = |\\ F -

Fig. 1.2.

The law of the refraction of light rays is described by the
relation

sine _ A.1)
sin B

Rewrite the equation AB -+ BC = AC as (D — H) tan o 4-
+ H tan B = 3D/4 or (bearing in mind that tan o =1
under the conditions of the problem)

D

—F=4(1—tan B). (1.2)
Passing from tan B to sin B and using Eq. (1.1), we have
sin B _ sin o0 - 1
tan p= Vi—sin?p  Vni—sinta V2nP—1'
(1.3)
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Substituting (1.3) into (1.2) we find
D

1
Tt (1—]/2,,2'__1) *

Since n = 4/3, H/D = 0.67. Thus, the ohserver will be
able to see the edge of the disc when water fills 0.67 of the
vessel’s volume.

Ptolemy’s Experiments. In the problem con-
sidered above the law of refraction (1.1) was
-used. Many investigations  conducted over a

Fig. 1.3,

long period of time preceded the discovery of this
law. They date back to the 2nd century A. D.,
when Ptolemy tried experimentally to determine
the relationship between the angles which the
incident and the refracted rays make with the
normal to the interface between media.

Ptolemy used a disc graduated in degrees. The
ends of two rulers were attached to the centre of
the disc, so that the rulers could be turned about
the fixed axis. The disc was half-submerged
in water (Fig. 1.3), and the rulers were positioned
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in such a way that they both seemed to be
in a straight line when viewed from the top.
Ptolemy fixed the upper ruler in different posi-
tions (corresponding to different values of the
angle o) and experimentally found the corre-
sponding position of the lower ruler (the corte-
sponding value of the angle p). It followed from
Ptolemy’s experiments that the ratio sin a/sin §
laid within the range from 1.25 to 1.34, i.e. it
was not quite constant. Thus, Ptolemy failed to
discover the exact law of the refraction of light.

The Discovery of the Law of Refraction by
Snell. Over four centuries passed before the law
of refraction was at last established. In 1626
the Dutch mathematician Snell died. Amidst
his papers a work was found, in which, in fact,
he was found to have formulated the law of re-
fraction. To illustrate Snell’s conclusions, turn
to Fig. 1.4. Assume that FO is the interface
between the media; the rays are incident on the
interface at point 0. The figure shows three
rays (I, 2, and 3); o, &,, and o.; are their angles
of incidence, and P;, B,, and P are the angles
of refraction. Erect the perpendicular FG at a
point F chosen at random on the interface between
the media. Designate the points at which the
refracted rays I, 2, and 8 cut the perpendicular
as 4,, A,, and 44, and those at which the exten-
sions of the incident rays Z, 2, and & cut it (in
the figure the extensions are represented by
dashed lines) as B,, B,, and B,. By experiment
Snell established that

04, _ 04, 04
OB, — 0B, _ 0By °
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Thus, the ratio of the length of the refracted ray
from the point O to where it crosses FG to the
length of the extension of the incident ray from O

Fig. 1.4.

to where it crosses FG is constant for every ray
incident on the interface:
04; _ 1.4
0B, = const (1.4)
(the index i indicates different rays).

The commonly accepted formula for the law
of refraction follows immediately from (1.4).
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Since OA;sin f§; = FO and OB,sin a; = FO,
formula (1.4) gives

sin «;
sin B;

= const. (1.5)

Thus, the ratio of the sine of the angle of inci-~
dence to the sine of the angle of refraction is
constant for a given pair of substances.

Descartes’ Interpretation of the Law of Refrac-
tion. Descartes’ Error. However, for some un-
known reason Snell did not publish his work. The
first publication which contains the wording of
the law of refraction does not belong to Snell but
to the famous French scientist René Descartes
(1596-1650).

Descartes was interested in physics, mathemat-
ics and philosophy. He had an-original and,
undoubtedly, vivid personality, and opinions
about him were many and coniroversial. Some
of Descartes’ contemporaries accused him of
making use of Snell’s unpublished work on the
refraction of light. Whether Descartes did or
did not see Snell’s work, the accusation is ground-
less. The fact is that Descartes formulated the
law of refraction on the basis of his own ideas
about the properties of light. He deduced the
law of refraction from the assumption that light
travels at different velocities in different me-
dia, i.e. his law was arrived at theoretically.

Curiously enough, Descartes formulated the
law of refraction using the erroneous assumption
that the velocity of light increases when it
goes from air into a denser medium. Today, we
find Descartes’ ideas about the nature of light
rather confused and naive. He regarded the

2—-01082
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propagation of light as the transferrence of pres-
sure through ether, a substance which, it was
supposed, surrounded and penetrated everything.
His work entitled “Dioptrics” reads: “Since there
is no vacuum in nature and since each body has
pores in it, it is necessary that these pores be

[4F3

|
a
|
v, L__ N

Y, x

Uix

— o

vzy Yl

Fig. 1.5.

filled with matter, that is rather very rarefied
and fluid, and which propagates incessantly from
celestial luminaries towards us.... Light is noth-
ing but a kind of motion or effect produced in the
rather rarefied matter filling the pores of the
bodies.” When analysing the refraction of light,
Descartes used an analogy with a ball thrown
into water. He claimed that “light rays conform
to the same laws as the ball”.

Descartes’ ideas regarding the refraction of light
can be illustrated by Fig. 1.5. Assume that v,
is the velocity at which light pressure is trans-
ferred in the first medium, and v, is the velocity
in the second medium. Descartes resolved both
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vectors into two components—one¢ parallel to
the media interface (the z-component) and one
perpendicular to the interface (the y-compo-
nent). He supposed that when light leaves one
medium and enters the other it is only the
y-component of v that changes, and in a denser
medium this component is greater. Putting it
differently, we get . ’

Uix = Ugx; Uiy < Ugy- (1.6)
The figure shows that

SinG _ vyxfvy Ve

SINB  vpxfvy  ¥p " ' (1.7)

Descartes’ major error was that he supposed
that light propagates faster in a denser medium,
whereas in reality it is the other way around.
“The harder the particles of a transparent body”,
was Descartes’ rather obscure reasoning, “the
easier they let light pass through, for the light
does not need to push any particles out of their
place in the way a ball pushes aside particles of
water to make its way through...”.

Descartes’ error was put right by Huygens and
Fermat.

Huygens’s Principle. The famous Dutch phys-
icist and mathematician Christiaan Huygens
(1629-1695) considered the propagation of light
to be a wave process. Huygens supposed that
light was in fact constituted by waves propagat-
ing through ether.

He looked upon the propagation of light
waves in the following manner. Assume that the
light wave is plane, the cross section of its wave-
front being a straight line. Let it'be line A4 in

2i
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Fig. 1.6. Light reaches every point of 44 simul-
taneously and, according to Huygens, all these
points start functioning simultaneously as point
sources of secondary spherical waves. As Huy-
gens stressed in his “Treatise on Light”, “...light

Fig. 1.6.

propagates in consecutive spherical waves”. After
a certain period of time Af, these wave-fronts
will create the situation shown in Fig. 1.6 by
dashed semicircles. Draw the envelope of the
fronts, which is actually the line BB. It corre-
sponds to the new position of the plane wave-front.
It can be said that within the time A¢ the front
of the light wave has moved from A4 to BB.
Naturally, every point on BB can also be regard-
ed as the source of secondary light waves. In
the figure, light rays are represented by arrows.
At every point in space a light ray is perpendic-
ular to the wave-front passing through the
point.

This method of representing consecutive posi-
tion of the wave-front became known as Huy-

gens’ method. It is also referred to as Huygens'
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principle and is formulated as follows: every
point reached by a light disturbance becomes in
its turn the source of secondary waves, the surface
enveloping these secondary waves at a given in-
stant indicates the position of the actual propagat-
ing wave-front.

Huygens’ Principle and the Law of Refraction.
Huygens deduced the law of refraction of light

Fig. 1 7.

using his principle (Fig. 1.7). Assume that a
plane light wave is incident at an angle o on a
surface 4,4 ,, which is the interface between two
media, for example, water and air. Let the ve-
locity of light in the first medium (air) be v,
and the velocity in the second medium (water)
be v,. According to Huygens’ correct reasoning,
v; > v,. Four light rays are shown by arrows in
the figure; the line 4,B, (dotted) shows where
the wave-front is at the moment when the ray 1

reaches the interface between the media. Ac-
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cording to Huygens, at the same moment, the
point A, becomes the source of a secondary spher-
ical wave. Note that this wave continues to
propagate in both the first and second media,
generating reflected and tefracted bundles of
rays, respectively. We shall confine ourselves
to the refracted waves. The dashed semicircle
with its centre at A, shows the front of the
spherical wave under consideration after a period
of time At, during which the ray £ travels from
B, to A, We can write that

BlA4 AICI
At‘=T=_vz_' (1.8)
When the ray 2 reaches the interface, 4, becomes
the source of a secondary wave. The semicircle
with the centre at A4, (dotted) represents the
front of this wave after a certain period of time
At,, during which the ray 4 travels from B, to
A,. Hence At, = B,A,/v; = A,C,/v,, When the
interface is reached by a ray &, point 4; becomes
the source of a secondary wave. The dotted
semicircle with its centre at 4, is actually the
front of this wave after At,, during which the
ray 4 travels from B, to A,, hence Af, =
= B,4,/v; = A,Cy/v,. The line C;A, isthe
envelope of the semicircles shown in the figure:
it corresponds to the wave-front of the refracted
bundle of rays at the moment the ray 4 reaches
the interface. It is clear from the figure that

i _BA A,

sina ﬂBA,A,l , sin B = A4, and therefore
sine B4, .

snf — 4,¢, Using (1.8), we have

sina __ v,

sinf vy (1.9
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Unlike (1.7), the correct relation between the
velocities is written here.

In this way the constant relation sin a/sin
discovered by Snell was explained from two op-
posing theoretical premises: Descartes’ erro-
neous assumption that the velocity of light in
a dense medium is greater than it is in air and
the correct though opposite assumption made by
Huygens. You can thus see how one experiment
can be used to substantiate different theories.
It stands to reason that a theory is always based
on and checked against an experiment. However,
one should refrain from putting forward a new
theory if it is based upon insufficient number of
experiments. The history of physics has records
of other examples, apart from Descartes’ error,
when theories formulated on the basis of insuf-
ficient experimental data were later proved to
be incorrect by further tests. The creation of a
new theory calls for a well-considered system of
experiments to check it for viability as well as
its compliance with other known facts and theo-
ries. A brilliant example here is the system of
experiments with prisms the great Isaac Newton
carried out. He used them to create his famous
theory of the origin of colour. This will be given
special consideration later (in Chapter Five),
but now we should go back to the law of refrac-
tion.

We introduce the refractive index n for the given
medium. According to the present-day views

n:%, (1.10)
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where ¢ is the velocity of light in vacuum (this
fundamental physical constant equals 2.9979 X
X 10% m/s), and v is the velocity of light in the
medium under consideration. Using (1.10) and
(1.9), we can rewrite the law of refraction as
follows:

sine __ ny
Sinﬁ - ny ’
where n, and n, are the refractive indices of
the first and the second media, respectively. If

light passes from air to a denser medium, for
example, water or glass, the velocity of light in

(1.11)

‘air can be assumed to be equal to ¢, i.e. the

refractive index of air is unity. Then, we can
write

sina
sinf —

(1.12)

where n is the refractive index of the denser
medium.

Fermat’s Principle (the Principle of Least Time).
However, let us go back to the 17th century to
familiarize ourselves with the investigation of
Pierre Fermat (1601-1665), a well-known French
mathematician. Fermat became interested in
the refraction of light some years before Huy-
gens. He came up with a general principle con-
cerning the way light rays travel in different
circumstances and, in particular, when light
rays pass through an interface between two me-
dia. This is known as Fermat’s principle or the
principle of least time. The wording of the prin-
ciple is: the actual path of the propagation of light
(the trajectory of a light ray) is the path which
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can be covered by light within the least time in
comparison with all other
between the same points.

hypothetical paths

Evidently, Fermat first conceived his idea

when considering the statement of Hero of Ale-

A C

////[%‘éf ){/,/ iy
.
G
Fig. 1.8.

xandria (2nd century B. C.) that reflected light
travels from one point to another along the short-
est path. True, it is clear from Fig. 1.8 that
ABC which complies with the law of reflection
is shorter than any other imaginable path from
the point A to C, for example, the path ADC.
The length of ABC equals the length of the
line AC,, whereas the length of ADC [actually
equals the length of the broken line ADC, (C,
is the mirror image of the point C).

It is quite obvious that the refraction of light
does not obey the principle of the shortest path.
Taking this fact into consideration, Fermat sug-

gested that the principle of shortest path be

replaced with the principle of least time. Fermat's
principle explains thereflection of light in a very
clear way. Besides, unlike the principle of
shortest path, it accounts for the refraction of
light as well,
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The well-known “Feynman Lectures on Phys-
ics” have the following passage: “To illustrate
that the best thing to do is not just to go in a
straight line, let us imagine that a beautiful
girl has fallen out of a boat, and she is scream-
ing for help in the water at point B. The line

Fig. 1.9.

marked X is the shoreline (Fig. 1.9). We are at
point A on land, and we see the accident, and
we can run and can also swim. What do we do?
Do we go in a straight line?... By using a little
intelligence we would realize that it would be
advantageous to travel a little greater distance
on land in order to decrease the distance in the
water, because we go much slower in the water.”

Deduction of the Law of Refraction from Fermat’s
Principle. Now let us reason absolutely rigorously. Let
the plane S bhe the interface between medium 7 and
medium 2 with the refractive indices n; = c¢/v, and
ny, = c/vy (Fig. 1.10a). Assume, as usual, that n; << n,.
Two points are given—one above the plane S (point A),
the other under the plane S (point B). The various dis-
tances are: AA; = hy, BBy = hy, AB; = 1. We must
find the path from A4 to B which can be covered by light
faster than it can cover any other hypothetical path.
Clearly, th s patl must consist of two straight lines, viz.
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AQ in medium 7 and OB in medium 2; the point O in the
plane S has to be found.

First of all, it follows from Fermat’s principle that
the point O must lie on the intersection of S and a plane
£, which is perpendicularg{to S and passes through¥4 and B.

(n)) A A

(] . (c)
Fig. 1.10.

Indeed, let us assume that this point does not lie in the
plane P; let this be point Oy in Fig. 1.106. Drop the per-
pendicular 0,0, from O, onto P. Since 40, << A0, and
BO, << BO4, it is clear that the time required to traverse
AO,B is less than that needed to cover the path 40,B.
Thus, using Fermat’s principle, we see that the first
law of refraction is observed: the incident and the re-
fracted rays lie in the same plane as the perpendicular
to the interface at the point where the ray is refracted.
This plane is the plane P in Fig. 1.10b; it is called the
plane of incidence.

Now let us consider light rays in the plane of incidence
(Fig. 1.10¢). Designate 4,0 as z and OB, = ! — z. The
lime it takes a ray to travel from A4 to O and then from O
to B is

;A0 |, 0B _ Vit | Vhi+(—2p®
= _— = - .
Ug

(1.13)

51 + Vg Uy
The time depends on the value of z. According to Fermat's
principle, the value of # must minimize the time 7. Those
familiar with basic mathematical analysis know that at
this value of z the derivative dT/dz equals zero:
ar T l—x

——=0.

& — — 1.14
dz " p VRida? v Vg (i—2p (19
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Now,
z l—=zx

———=s5sin o, and ————=sin y
Vit Vi a—aP g
consequently, .
sine  sinf

o T =0. (1.15)

The second law of refraction described by the ratio (1.9)
immediately follows from (1.15).

True, Fermat himself could not use (1.14) as mathe-
matical analysis was developed later by Newton and
Leibniz. To deduce the law of the refraction of light,
Fermat used his own maximum and minimum method of

calculus, which, in fact, corresponded to the subsequently |

developed method of finding the minimum (maximum)
ofa lunction by differentiating it and equating the deriva-
tive to zero.

Application of Fermat’s Principle. Fermat's
principle can be illustrated by the following
1

Fig. 1.11.

example. Let a light ray travel from A to B by
passing through an interface between media with
refractive indices n; and n, (Fig. 1.11). Let the
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distance AO = OB = l. Assume that the z-axis
runs along the interface, and the origin of coor-
dinates is at the point O, where the ray strikes
the interface. Draw a broken line ACB (point
C must lie on the interface between the media).
According to Fermat’s principle, the time required
to traverse ACB will be greater than the
time required to traverse the actual path AOB
(for which sin a/sin p = ny/n;) at any value
of x = OC. Make sure this is true considering,
for the sake of simplicity, sufficiently small
values of z.

Using the law of sines for the triangles A0C
and BOC, we have

AC=V Tt a2t 2lzsina= 1V 1+ (P + 2nsina),
(1.16)

CB=1VTF(E—2nsimp) (n=a/1)

Recall the approximate relation V1i+y=
=1 4 9/2 which holds true for y< 1. Since
we are assuming that x<« ! and, consequently,
1< 1, we can use the above approximate equa-
tion and rewrite (1.16) as

AC =1 (1 + nsin o + 1?/2);
1.17)

CB =1(1 —nsinp + n%2).

The time T required for the light to traverse
AOB is T =1 (n, + ny)/c. Designate the time
which it would take the light to traverse the
path ACB as T, thus T, = (AC+ny + CB ny)le.
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Substituting (1.17) for AC and CB and using
(1.11) (remembering that n = z/l), we have

l 11 2
T, =?(n1+n2)+7—c— (%) (ny+ny) =T+ Da?,
Obviously, 7T, > T whatever the sign of z,

which is what we set out to prove.

Now let ug use Fermat’s principle to solve the following
problem. There is a coin at the bottom of a reservoir which
has a depth H. We view it from above along a vertical line.

7 D B
a
x = la
Ol
—1 1= = — ofF -
|17
~ H
/
iy :
s
¢ p
A A
(a) ®)
Fig. 1.12.

What is the apparent distance between the water surface and
the coin? The refractive index of water n is given.

Figure 1.12a¢ shows a greatly magnified crystalline
lens of the observer. Two light rays from the coin enter
it. One follows a strictly vertical path (it is not refracted),
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and the other entersit at a very smallangle to the vertical
(his ray is refracted at the interface between the water
and air). The observer sees the coin where the extensions
of the diverging rays arriving at the eye converge. The
figure shows that this happens at the point C. So, the
distance from the water surface to the coin is OC and we
designate, it as y.

To find the value of y, we have to know the relation-
ship between the angles @ and §, which follows from the
law of refraction sin a/sin f = n. Since in this instance
the angles a and P are very small, we can salely use the
approximate relations

sinoe=tano =«, sinp = tan P = . (1.18)

(Note that in (1.18) the angles must be .measured in
radians and not degrees.) Thus, in the problem under con-
sideration, the law of refraction assumes a particularly
simple form: ‘

2 —n (1.19)

1t follows from basic geometry (see Fig, 1.12) that Hf = =
and ya = r; so Hp = ya. With regard to (1.19), we get
7l
_ 4 2
V= , (1.20)

Our problem turned out quite simple provided we are
familiar with the law of refraction. Now let us assume
that we had no knowledge of the law of refraction. Fermat's
principle would enable us to deduce (1.19) and through
Lhis resolve the problem.

The light ray travels from 4 to B; assume that 0D =
=k, and DB = 1 (see Fig. 1.12b). Designate the point
at which the ray is refracted as 0y; 00y = z. We must
determine the value of z for which the time required to
traverse the path A0,B is the least. The time T of transit
over this path is described by the equation

n H 1k (L.21)

’

T ¢ cosp +;‘ cosa
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here ¢ is the velocity of light in vacuum (we hold that
:vhe velocity of light in air is the same). Using (1.18),
we get

1 1
cosPp=1—2sin? B =1—?Bz;‘ cosa=1—7a2. (1.22)

z
Since E < 1, the following approximate relation holds
true:
LA (1.23)
-1—__—§—1+§.
Making use of (1.22) and (1.23), we can write (1.21) as

- (18] 44 (145).

¢ ¢

Since
l—z
h

a= and B=—, (1.24)

we have
o (1) [ S5,

We must determine the value of z for which 7 is thg least.
In other words, we must find the v_al_ue of z for which the
following function reaches its minimum:

z2 (I—2)! _ nh+H l »
y(@)=n T‘}‘ W hH =2 ot

It is known that the z-coordinate of the vertex of the
parabola) y = az® +4- bz + ¢ is b/2a. Consequently, the
value of z we are looking for equals

4 1.25

ey (1.29)
in

Substituting (1.25) into (1.24), we have a = m ,

1
-t W /B = n.
B oh H,whence alp=n
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Total Internal Reflection of Light. Critical
Angle of Reflection. Up to now, while examin-
ing the refraction of light at an interface, we
have virtually disregarded the reflection of
light from the interface which occurs simul-
taneously with refraction. Strictly speaking, the
two phenomena (refraction and reflection of
light) should be considered together. This was
proved in a most convincing way by the out-
standing French scientist Augustin Jean Fresnel
(1783-1827) who obtained the relationshipsfor
the intensity of the refracted and reflected beams
of light with regard to the incident.beam’s in-
tensity, the magnitude of the angle of incidence,
and the polarization of the light. These rela-
Lionships are known today as Fresnel's formulae.
They have preserved their original form in
modern optics.

Fresnel’s formulae go beyond the confines of
this book because we would need to use the elec-
tromagnetic theory of light to interpret them.
Besides, polarization of light needs to be dis-
cussed separately. That is why we shall limit
ourselves to a few general remarks concerning
the interrelations between the intensities of
the refracted and reflected beams of light,
and examine the case when light passes from a
medium with a higher refractive index to a
medium with a lower one (in other words, from
a dense to a less dense medium). This case is of
special interest to us as it illustrates the phe-
nomenon of fotal internal reflection.

Figure 1.13 shows four cases corresponding to
different magnitudes of the angle of incidence
of a light beam. Light falls on an interface be-
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