










the PVT. These results demonstrate that the
PVT does not encode PE (6, 30, 31). Moreover,
inhibition of PVT activity impairs associative
learning of appetitive and aversive outcomes
as well as extinction of an established reward
association. Together, our results highlight the
importance of stimulus salience in driving
learning. Silencing PVT activity affects learning
but not expression of conditioned behavior,
indicating that the function of the PVT is dif-
ferent from other thalamic nuclei such as the
mediodorsal thalamus or the thalamus that
connects with the anterior lateral motor cortex
because silencing these regions disrupts ongoing
task performance (12–15). In well-trained mice,
silencing PVT CS response has no effect on
licking when water is available but slowed ex-
tinction when water is not available, which
suggests that CS responses in well-trained mice
are for monitoring potential changes of salience.
The critical next step is to determine how sa-
lience information in the PVT is communicated
to the rest of the brain. Axons of PVT neurons
show extensive collateralization; therefore, the
PVT could simultaneously broadcast salience
signals to multiple downstream targets to co-
ordinate their activities (fig. S9) (38). PVT ter-
minals in the nucleus accumbens (NAc) directly
interact with dopaminergic fibers from the ven-
tral tegmental area and evoke dopamine efflux,

suggesting a direct interaction of salience and
reward PE signals in the NAc (39). The impact
of these interactions on associative learning
needs to be investigated further.
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Fig. 6. Reward-omission response in the PVT.
(A and B) Mean photometric traces (A) and
histogram (B) illustrating delayed but
long-lasting PVT responses to reward omission.
Expected reward (black, n = 10 mice); reward
omission (red, n = 10 mice), Wilcoxon
signed-rank test, P = 0.19 (CS); **P < 0.01 (US).
(C) (Left) Representative traces of individual
omission response (red) superimposed with
lick raster plots (black). (Right) Mean
photometric traces (n = 10 mice) after aligning
to the last lick in omission trials. Shown is the
rapid increase of calcium signals after licking
stops. Scale bar, 2% DF/F, 1 s. Gray bar
indicates CS delivery, and vertical dashed line
indicates US delivery in (A) and (C).
(D and E) (Top) Representative lick raster
plots from (left) PVT::GFP and (right)
PVT::ArchTmice with laser stimulation during
(D) reward-omission period or (E) CS + delay
period of extinction trials. Back lines indicate
the start and end time for odor delivery,
respectively. Red line indicates water delivery.
Scale bar, 1 s. The mice received water reward
in first 10 trials (black), then water delivery
stopped (red), and optogenetic stimulation was
on until the end of the trial (green). (Bottom)
Quantification of anticipatory licks in 30
extinction trials. Licks (black dot) are normalized
to averaged licks during the first 10 trials.
Red line indicates the exponential fit of licks.
(D) (Inset) Histogram shows the mean time
constants (t) of extinction from PVT::GFP
(white, n = 6) and PVT::ArchT (green, n = 10) mice. (E) (Inset) Histogram shows the mean time constants (t) of extinction from PVT::GFP (white, n = 9)
and PVT::ArchT (green, n = 10) mice. Mann-Whitney U test, *P < 0.05. Shade, SEM across mice in (A) and (C). Data are means ± SEM.
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coupled with wakefulness.
from neurons in the paraventricular thalamus and observed that both population and single-neuron activity were tightly 

 recordedet al.information and contributes to the sleep-wake cycle through its interactions with the cerebral cortex. Ren 
novelty, and surprise. The nucleus thus provides context-dependent salience encoding. The thalamus gates sensory
paraventricular thalamic neurons represent multiple salient features of sensory stimuli, including reward, aversiveness, 

 found thatet al.internal states with the limbic forebrain that performs associative functions in emotional contexts. Zhu 
The paraventricular thalamus is a relay station connecting brainstem and hypothalamic signals that represent
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