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Fusion Neutron Science

Á Spans multi-disciplinary, multi-scale science and 
engineering 

Á Benefits from modern multi-physics simulation and 
experimental efforts

Á Provides unique solutions to significant Energy and 
National Security problems

Á ²ŜΩƭƭ ŜȄŀƳƛƴŜ ǘǿƻ ŀǊŜŀǎ ǘƘŀǘ ƛƭƭǳǎǘǊŀǘŜ ōƻǘƘ ǘƘŜ ǎŎƛŜƴŎŜ 
required and the problems addressed:

Á Accelerator neutron sources

ïNear-term: Remote detection of explosives

ïNew compact accelerator concepts

Á Large plasma neutron sources

ïDriving fusion plasmas with RF waves

ïNear-term: Fusion-fission hybrid reactors 
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Remote Detection Using Neutrons

Á Neutrons penetrate shielding and activate unique, identifying gamma rays 
through όƴΣ ƴΩύ ƻǊ όƴΣ ) reactions

Á Source requirements: 107 n/s, energies lines of interest for (n, nΩύΦ  tǳƭǎƛƴƎ 
capability can be important
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Neutron Induced Gamma Signatures Enable 
Identification of Organic Materials

A. Buffler (2004)

όƴΣ ƴΩ) Prompt Lines:
12C: 4.44MeV
16O: 6.13MeV
14N (1): 2.31 MeV
14N (2): 1.64, 2.31MeV
14N(3): 4.9 MeV
14N(4): 5.11 MeV
14N(5): 0.73MeV
14N(9): 7.0 MeV
14N(12): 3.4 MeV, 5.11 MeV

(n, ) Delayed Lines (Thermal Capture):
1H: 2.23 MeV
14N: 10.83 MeV 

Noteτfor 14 MeV neutrons, potential 
issue with OĄC transmutation*

n

target

*not too bad, see Seabury and Caffrey, INEEL/EXT-04-02475, 2004
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Overcoming Signal/Noise: 2 Approaches 

Á Signal to Noise, R=S/N, scales as 1/D4, where 
D is distance to target  (i.e. 2 solid angles)

Á 2 fundamental ways to increase R, along w/ 
time-gating: 
1) Bring detector and/or source very close 

to target
2) Increase directionality of neutron 

output

Á Ultra-miniature, palm-size and lightweight D-
T neutron source for 1)τSuch a source could 
be remote or even thrown to targetτa 
άƴŜǳǘǊƻƴ ŦƭŀǊŜέ

Á Portable 4 to 7 MV accelerator utilizing 
unique properties of D-D reactions for 2)τ
Needs to be ~10x smaller and lighter than 
conventional sources

1.  Mini, palm-size ~100 kV D-T 
isotropic neutron source
D + T Ą 4He + n (~14.1 MeV)

2.  Portable D-D, multi-MV 
accelerator pulsed directional 
neutron source
D (4 MeV) + D Ą 3He + n(7.2 MeV, 
forward)

мΩǎ-млΩǎ Ƴ

Ωǎ
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Basic MCNP Scaling Study

Time to 100 useful counts, 200 lb RDX
ÁD-D source, 4 MeV D beam, time-gated
Á50 x 50 cm2 Det., 10% efficient
ÁUse C (4.4), O(6.13), N (2.31) lines

ÁRemote detection problem is challenging 
ÁFor 108 n/s, side dose is ~0.35 rem/hr
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Á First results from UCLA (Naranjoet al., 2005)

Á Little/no electrical powerτthermally powered (10-20 W), could be provided by small 
external chemical pack (hand warmer)τutilizes >10x higher energy storage compared 
to batteries

Á At LLNL, we significantly extended this work through modeling and experiments by 
increasing yield and adding pulsing capability, and currently has highest yields and rates

Pyrofusion: A Palm-size Neutron Flare

Ϥонέ 3 cm

Conventional N Tube

V=Q/C

V. Tang et al, CAARI (Invited), 2008

Patent Pending
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Coupled Thermal/Electrostatics Model
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Coupled Model

ÁLimits to rapid heating through rear of crystal due to local field stresses, breakdowns, 
and field emission losses

Á²Ŝ Ŏŀƴ ǳƴŘŜǊǎǘŀƴŘ ¦/[!Ωǎ ƛƴƛǘƛŀƭ ǊŜǎǳƭǘǎ ŀƴŘ ŜȄǘŜƴŘ ǘƘŜƳ ǳǎƛƴƎ ǘƘƛǎ ŎƻǳǇƭŜŘ ƳƻŘŜƭ

Experiments and 
comparison with model

V. Tang et al, J. Appl. Phys., 2009
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LLNL Crystal Driven Neutron Source I

Record 190k DD  integrated n 
yield at ~103 n/s, ~80-90 kV

Á Model: Multi-physics field ionization model reproduces ion beam measurements 

Á Experiment: Record ion beam currents (up to 10 nA) and D-D neutron yield 
(190k) per thermal cycle, extending UCLA work (~2.2x).  

Á Can we add user-controlled pulsing capability and increase neutron rate?

Modular PyrofusionSetupPyrofusion Simulation and Models

CrystalEmitter 
Tip

Ion Beam

V. Tang et al, Rev. Sci. Intr., 2007
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LLNL Crystal Driven Neutron Source II

ÁLLNL spark D ion source: 25 ns to >100 ns, 2-4 kV input, allows UHV operation--ampere 
level currents

ÁCoupled with crystal, permits user-controlled ~100 ns pulse emission giving >10k D-D 
neutrons per pulse (~3 x 106 DT n), with peak rates >1010D-D n/s

Proof-of-principle Pulsed Experiment Using Independent Spark Ion Source

Aperture Plate

Extracted D+ Ion 
Beam to crystal

Spark Plasma

+ ~kV pulseGND

Insulator w/ 
TiD2 spark 
strips

G. Guethleinet al., CAARI, 2008
S. Falabellaet al., CAARI, 2008

T=30 C0

V. Tang et al, J. Appl. Phys., 2009
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Next Steps to Higher Yields

Á Novel miniature pyroelectric neutron sources can provide new 
interrogation capabilities for unknown threats and enable new 
CONOPs

Á We demonstrated record ion beam current and neutron yields for both 
conventional and LLNL pyrofusion configurations

Á Next: More yield using domed shaped and larger diameter crystals, and 
tests with nanotubeion source.  Achieve ~107 DT average n/s, ~10 s 
operation per cycle

Á Further improve Monte Carlo field ionization model 

ü Can we insulate the crystal further to prevent field emission 
losses/flashover and achieve higher voltages?  

ü Are there materials with higher pyroelectric coefficients and similar 
high voltage characteristics? (~10 MV/m hold-off)

ü Can we understand and further improve the spark ion source through 
multi-physics models? 
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LLNL Compact Directional Neutron Source

ÁPhase ITest new piezoelectric HV supply concepts, LLNL high gradient 
insulator, and ion source in integrated test-bed.  Finalize path to compact 
accelerator (5 months from design to test, utilize off-the-shelf 
components)  

ÁPhase IIDevelop identified technologies in Phase I and integrate into final 
portable prototype accelerator.  Test prototype in field scenarios

DARPA Project Goal: 
Shrink DC 
accelerator to make 
directional  neutrons   
from this
(MV/m)    

To This:
(>5 MV/m)

4MV >108 n/s Directional 
Neutron Source

Patent Pending
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Developmental Technologies for a Compact Directional  
Neutron Source

Ampere Class Pulsed Ion Sources

10 kV 
Compact 

Piezoelectric
Transformer

Multilayer High Gradient 
Vacuum Insulators (HGI)
(Up to ~10 MV/m DC for 

short sections)Sample 100 kV High Voltage Modules 
(6 stages) Driven by Transformer
(6 modules provide 400 kV=1 Set)

Accelerator 
Assembly

Phase I Test Supply (2 Sets) 

2 Phase, self-healing 
dielectric HV insulator, 

with 10 x higher DC 
resistivity than 

conventional Si OilPatent Pending

Sampayan, Tang, et al., CAARI, 2008
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Accelerator Demonstrated Directionality at 
Moderate Ion Energies

Á410 keVions, >3:1 neutron directionality ratio observed, 3.2 MeV neutrons

Á~25 ns pulse neutron rate demonstrated to >107 n/s (1 kHz equivalent)

ÁHigh voltage power supply components and architecture exhibit MV scalability

ÁColumn and supply tested to DC 2 MV/m average field stress

ÁNumerous science and engineering topics still to be explored

üContinue developing system model for optimum number of multiplier stages and sets for given 

current, field stress, power, and size constraints

üHow does our empirically developed 2-phase self-healing insulator work?  What are the fundamental 

transport phenomena involved?

üWhat are the optimum detection strategies using a portable and tunable ~4 MV accelerator?
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