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Abstract: The left-hand side of the auroral hiss emission observed by Galileo has a 

frequency time shaped very similar to the funnel shape observed in the earth's auroral 

region. This close similarity indicates that we can use the whistler-mode propagation near 

resonance cone to locate the emission source. In this paper the general characteristic of the 

whistler mode are discussed. Then the position of the emission source has been investigated 

using a geometry method that takes into account the Galileo's trajectory. Initially it is 

assumed the source is a point. Then the possibility of sheet source aligned along the magnetic 

field lines which are tangent to the surface of Io is investigated. Both of two types of sources 

show that the whistler mode radiation originates very close to the surface of the Io.   

Nomenclature 

𝑩 = magnetic field 

𝜍
  = conductivity tensor 

𝐾
  = dielectric tensor 

𝒌 = wave propagation vector 

𝑱 = current density 

𝑬 = electric field 

𝜔𝑐𝜍 , 𝜔𝑝𝜍  = cyclotron frequency, and plasma frequency of particle 𝜍 respectively 

𝜔 = wave frequency 

c = phase velocity of the light waves 

𝒏 = refractive index,  
𝑐𝒌

𝜔
  

𝜀0, 𝜇0 = permittivity of vacuum, and permeability of vacuum respectively  

𝜌 = charge density 

𝑞𝜍 , 𝑚𝜍 , 𝑛𝜍  = particle's charge, particle's mass, and particle's density respectively 

𝑒 = electron charge 

𝑽𝑐 , 𝑽𝜍 , 𝑽𝐴  = conductor's velocity, particle's velocity, and Alfven velocity respectively 
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I. Introduction 

uroral hiss is a type of whistler mode radio emission which frequently occurs in high latitude regions of 

planetary magnetospheres and also observed by Galileo spacecraft over the Jupiter's moon Io during a flyby of 

Io in October 16, 2001. This emission was first discovered using ground based instruments,
 1

 which detected a very 

low frequency broadband emission in association with aurora. The first satellite observations of auroral hiss were 

made at the earth in the 1960s,
 3,4,5,6

 and similar emissions have since 

been detected at other planets in the solar system, including Jupiter, 

Jupiter's moon Io, and Saturn. Auroral hiss is known to propagate in the 

whistler mode, as the frequency is always above the local proton 

cyclotron frequency and below both the electron cyclotron frequency 

and electron plasma frequency. Whistler mode wave are the only 

plasma waves that can propagate in this range of frequencies. On a 

frequency-time spectrogram, this emission displays a characteristic 

funnel shape with a V-shaped low frequency cutoff as shown by 

Gurnett.
 4

 The emission's V-shaped nature is explained by emission 

from localized source propagation near the resonance cone.
 7,8,9

 The 

resonance cone is defined as a cone of angles with respect to the 

magnetic field where the refractive index goes to infinity, and denotes 

the region around the magnetic field line in which the emission is 

restricted to propagate. The resonance cone also imposes a restriction on 

the group velocity, the propagation of wave energy, to a region of angles 

around the field line. This boundary is a property of the index of 

refraction, 𝑛 𝜃 , where 𝜃 is the angle between the propagation vector 

and the central field line. This is shown in Fig. 1. As the refractive 

vector deviates further from the magnetic field direction, it approaches 

an angle where the index of refraction asymptotes to infinity. This angle 

is defined as 𝜃𝑟𝑒𝑠 . From this angle the limiting group velocity angle 𝜓 

could be defined. It can be shown that the group velocity angle is 

perpendicular to the index of refraction surface.
 10

 Then it can be written 

𝜓 = 90𝑜 − 𝜃𝑟𝑒𝑠 . This condition, however, is not uniform for all 

components of the emission; because the resonance cone angle is 

frequency dependent. The lower frequencies will have a smaller 

resonance cone angle than higher frequencies. In addition, this emission 

has an upper cutoff, as the resonance cone angle goes to 𝜃𝑟𝑒𝑠  at either 

the plasma frequency or cyclotron frequency. These results imply that as 

a spacecraft flies through a region of whistler mode emission 

propagating along the resonance cone it will encounter higher 

frequencies first, and detect lower frequencies only near the midpoint of 

its pass through this region. This emission will also be bounded on the high frequency end by either the plasma 

frequency or cyclotron frequency whichever is lower. This characteristic is shown in Fig. 2.
 
As one can see in Fig. 2, 

this emission will display a characteristic funnel shape when plotted on a frequency versus time spectrogram. It is 

clear that the detection of such emissions is dependent upon the location of spacecraft as it orbits the planet. In the 

following sections first the observations and the unipolar inductor model will be reviewed. Then after presenting the 

whistler mode generation and propagation, both point source and cylindrical sheet geometry model will be 

discussed.   

II. Observations and the Unipolar Inductor Model 

In this section we proceed by reviewing the frequency-time spectrogram taken by Galileo and then will discuss 

current generation of conductor which pass through a plasma environment in brief.   

A. The Galileo's Observations 

The Galileo spacecraft which was placed in the orbit around Jupiter on December 7, 1995, has been carrying out 

a series of close flybys of the four Galilean satellites. The spacecraft trajectory relative to Io from 00:50:00 UT to 

02:10:00 UT on October, 16, 2001 is shown in Fig. 3. In this figure the coordinate system is used with the +Z axis 

aligned parallel to Jupiter's rotational axis and the +X axis aligned parallel to the nominal co-rotational plasma flow 

A 

 
Figure 1. Propagation of auroral hiss 

emission along the resonance cone from 

Ref. 2. 

 

 
Figure 2. The Hall thruster cross-

section schematic from Ref. 2. 
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induced by Jupiter's rotation. The +Y axis completes the usual right-

handed coordinate system. As can be seen, the spacecraft passed over 

the south pole of Io with a closest approach at a radial distance of 

1.098 𝑅𝐼𝑜  at 01:23:20 UT.            

A spectrogram of electric field intensities obtained from the Galileo 

plasma instrument in the vicinity of Io is shown in Fig. 4. The red 

color in the spectrum represents strongest emission while the blue 

color represents the weakest emission. The range from dark blue to 

bright red is 70 dB. The time range is chosen from 01:08:20 UT to 

01:38:20 UT so that the auroral hiss-like emission can be shown 

clearly. This radiation occurs from 01:16:00 UT to 01:20:00 UT and 

spans a frequency range from about 1 kHz to 40 kHz. The radiation 

has an asymmetrical funnel-shaped low frequency cutoff that decreases 

monotonically from about 40 kHz at 01:16:00 UT to 10 kHz at 

01:20:00 UT. The electron cyclotron frequency shown by the white 

line marked 𝑓𝑐𝑒  was computed from on-board magnetic field 

measurements using the equation 𝑓𝑐𝑒 = 28 𝐵 𝐻𝑧 where B is in nT. It 

has a value about 58 kHz and the proton cyclotron frequency 𝑓𝑐𝑖  has a 

value of about 32 Hz. The electron plasma frequency, shown by the 

white line marked 𝑓𝑝𝑒 , is also shown in the figure and has a value 

about 600 kHz during the period of interest. As can be seen the 

following inequalities exist among the proton cyclotron frequency, 

the observed emission frequency 𝑓, the electron cyclotron 

frequency, and the electron plasma frequency: 

 

𝑓𝑐𝑖 ≪ 𝑓 ≪ 𝑓𝑐𝑒 < 𝑓𝑝𝑒  . (1) 

                 

For these parameters the only possible mode of propagation in 

the frequency range of interest is the whistler mode. As will be 

shown shortly these inequalities will allow us to greatly simplify 

the cold plasma dispersion relation which will be used later to 

perform ray-path calculations. The plots of X, Y, Z components of 

the magnetic field in nT for the same time range in Fig. 4, is shown 

in Fig. 5. From these plots it can be seen that all three components 

of the magnetic field are smooth and slowly varying except in the 

interval between 01:15:00 UT to 01:32:00 UT which corresponds 

to the time range when the spacecraft was in the vicinity of Io. In 

this interval saw-shaped perturbations are obviously observed in 

the 𝐵𝑥  and 𝐵𝑦  plots with perturbations amplitudes of about 

∆𝐵𝑥 = 600 𝑛𝑇 (in a background of -300 nT) and ∆𝐵𝑦 = 300 𝑛𝑇 

(relative to a background of -300 nT). Obvious abrupt changes in 

magnetic field occurred at about 01:21:00 UT to 01:29:00 UT. 

According to Ampere's law ∇ × 𝑩 = 𝜇0𝑱 , those changes indicate 

that the spacecraft crossed two intense current sheets, one near the 

inner boundary of Io, and the other near the outer boundary of Io. 

In the region between the two major current sheets, the z-

component of the magnetic field increased (decreased in 

magnitude) gradually with small oscillations. After the second 

current sheet crossing, the 𝐵𝑧  field drops down to an equilibrium 

value of about -1650 nT which is slightly larger than the field (-

1900 nT) that was present during the approach to Io. Comparing 

with the electric field spectrum, it can be seen that the auroral hiss-

liked emission occurred when the magnetic perturbation started. 

The vertex of the funnel-shaped emission occurred almost exactly 

at the same moment as the first major magnetic field discontinuity. 

 
Figure 3. Trajectory of Galileo during 

the Io flyby in Oct. 16
th

, 2001. 

 

 
Figure 4. Time-Frequency spectrum of the 

electric field for the time series from 01:08:20 

UT to 01:38:20 UT, Oct. 16
th

, 2001. 

 

 
Figure 5. Magnetic field components versus 

spacecraft event time, Oct. 16
th

, 2001. 
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These facts can be explained as follows: when the spacecraft approached the current sheet auroral hiss-liked 

radiation generated by the current was first detected; the radiation was continuously received with strongest wide 

spectrum radiation occurring as the spacecraft was right in the current sheet. These data suggest that the auroral hiss 

is closely associated with the current that cause discontinuity in the magnetic field. This fact gives further evidence 

of the presence of a field aligned current flow connecting Io with Jupiter as proposed by Goldreich and Lynden-Bell 

(1968). Similar magnetic perturbations of about 5% were also detected earlier by Voyager 1 when the spacecraft 

crossed Io's magnetic flux tube about 11 𝑅𝐼𝑜  below Io.         

B. The Unipolar Inductor Model 

There is a motional induced charge separation in a conductor moving across magnetic field lines. This charge 

may be conducted away, resulting in a dc current flow through the conductor if it moves through plasma. The 

generation of Alfven waves is a mechanism particularly effective for circulating the charge for very large conductors 

moving in or above the planetary ionosphere.  

Alfven waves were first postulated by Alfven using the theory of magnetohydrodynamics or MHD [1]. MHD 

refers to a highly conducting fluid with the presence of a magnetic field. In the case of an incompressible MHD 

fluid, Alfven found that there is one wave mode that can propagate. This wave often refers to as a shear Alfven 

wave, is primarily electromagnetic in nature. The wave is characterized by a perturbation magnetic field which is 

transverse to the undisturbed magnetic field and propagates along the direction of undisturbed field. Also the fluid is 

perturbed in a direction transverse to the undisturbed magnetic field. Often the shear Alfven wave is described as 

being analogous to a wave on a taut string where the Maxwell stress provides the tension. Herlofson and Van de 

Hulst first demonstrated that if an MHD fluid is allowed to be 

compressible two additional wave modes are possible: the fast and 

slow magnetosonic modes [2]. These two modes have both 

acoustic and electromagnetic character and are also sometimes 

referred to as Alfven waves. This section is primarily concerned 

with shear Alfven waves which will be referred to simply as 

Alfven waves and the other MHD modes will be referred to as 

magnetosonic waves [2,3,4]. The goal of this section is to review 

the theory of Alfven wave generation by a moving object in a 

magnetized plasma environment and the relevant current sheet due 

to this motion.  

As a basic the model of Drell [1965] for a satellite is presented. 

Drell represent the satellite as a perfect conductor and assume the 

satellite moves through plasma with a uniform magnetic field. The 

approximation of cold plasma is made; and linear perturbation 

theory is applied. Further approximations appropriate to obtain 

MHD results are made. Then a wave equation for an Alfven wave 

is obtained.  

Consider a perfect conductor moving in a collisionless plasma 

in a direction perpendicular to a uniform magnetic field 𝑩0. As 

shown in Fig. 6, the magnetic field 𝑩0 is in the z direction, and the 

velocity 𝑽𝑐  is in the x direction. In the conductor a motional 

electric field, 𝑬 = 𝑽𝑐 × 𝑩0 will be just canceled by the charge 

separation shown in Fig. 6. Also assume that the conductor has no 

work function to prevent the flow of electrons from the conductor's 

surface into the plasma. In addition, it must be considered that for 

collisionless plasma the conductivity parallel to magnetic field line is large, and the conductivity perpendicular to it 

is small (
𝜍∥

𝜍⊥
≫ 1). 

It can be shown that a single particle immersed in a constant, uniform equilibrium magnetic field 𝑩0 = 𝐵0𝑧  and 

subject to a small-amplitude wave with electric field ~𝑒𝑥𝑝 𝑖𝒌. 𝒙 − 𝑖𝜔𝑡  has the velocity: 

 

𝑽 𝜍 =
𝑖𝑞𝜍
𝜔𝑚𝜍

 𝐸 𝑧𝑧 +
𝑬 ⊥

1 − 𝜔𝑐𝜍
2 𝜔2 

−
𝑖𝜔𝑐𝜍

𝜔

𝑧 × 𝑬 

1 − 𝜔𝑐𝜍
2 𝜔2 

 𝑒𝑖𝒌.𝒙−𝑖𝜔𝑡  . (2) 

  

 
Figure 6. An ideal conductor moving 

through plasma in a direction perpendicular 

to the magnetic field. Charge separation 

occurs in the conductor from Ref. 11. 
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The tilde ~ denotes a small-amplitude oscillatory quantity with space time dependence 𝑒𝑥𝑝 𝑖𝒌. 𝒙 − 𝑖𝜔𝑡 ; this 

phase factor may or may not be explicitly written, but should always be understood to exist for a tilde-denoted 

quantity. The three terms in Eq. (2) are respectively: 

1) The parallel quiver velocity: this quiver velocity is the same as the quiver velocity of an unmagnetized 

particle, but is restricted to parallel motion. Because the magnetic force 𝑞 𝑽 × 𝑩  vanishes for motion along the 

magnetic field, motion parallel to 𝑩 in a magnetized plasma is identical to motion in an unmagnetized plasma. 

2) The generalized polarization drift: this motion has a resonance at the cyclotron frequency but at low 

frequencies such that 𝜔 ≪ 𝜔𝑐𝜍 , it reduces to the polarization drift 𝑽𝑝𝜍 = 𝑚𝜍𝑬 ⊥ 𝑞𝜍𝐵
2 . 

3) The generalized 𝑬 × 𝑩 drift: this also has a resonance at the cyclotron frequency and for 𝜔 ≪ 𝜔𝑐𝜍  reduces to 

the drift 𝑽𝐸 =
𝑬×𝑩

𝐵2 .   

The particle velocities given in Eq. (2) produce a plasma current density: 

 

𝑱 =  𝑛0𝜍𝑞𝜍𝑽 𝜍
𝜍

= 𝑖𝜀0  
𝜔𝑝𝜍

2

𝜔
 𝐸 𝑧𝑧 +

𝑬 ⊥
1 − 𝜔𝑐𝜍

2 𝜔2 
−
𝑖𝜔𝑐𝜍

𝜔

𝑧 × 𝑬 

1 − 𝜔𝑐𝜍
2 𝜔2 

 𝑒𝑖𝒌.𝒙−𝑖𝜔𝑡

𝜍

 . (3) 

 

where 𝜔𝑝𝜍 =
𝑛0𝜍𝑞𝜍

2

𝜀0𝑚𝜍
 .If these plasma currents are written out explicitly, then Ampere's law has the form: 

 

∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜀0

𝜕𝑬 

𝜕𝑡
= 𝜇0  𝑖𝜀0  

𝜔𝑝𝜍
2

𝜔
 𝐸 𝑧𝑧 +

𝑬 ⊥
1 − 𝜔𝑐𝜍

2 𝜔2 
−
𝑖𝜔𝑐𝜍

𝜔

𝑧 × 𝑬 

1 − 𝜔𝑐𝜍
2 𝜔2 

 − 𝑖𝜔𝜀0

𝜍

𝑬   . (4) 

  

where a factor 𝑒𝑥𝑝 𝑖𝒌. 𝒙 − 𝑖𝜔𝑡  is implicit. 

The cold plasma wave equation is established by combining Ampere's and Faraday's law in a manner similar to 

the method used for vacuum electromagnetic waves. However, before doing so, it is useful to define the dielectric 

tensor 𝐾 . This tensor contains the information in the right hand side of Eq. (4) so that this equation is written as:  

 

∇ × 𝑩 = 𝜇0𝜀0

𝜕

𝜕𝑡
 𝐾 .𝑬  . (5) 

    

Where 𝐾 . 𝑬 is:  

 

𝐾 . 𝑬 = 𝑬 −  
𝜔𝑝𝜍

2

𝜔2
 𝐸 𝑧𝑧 +

𝑬 ⊥
1 − 𝜔𝑐𝜍

2 𝜔2 
−
𝑖𝜔𝑐𝜍

𝜔

𝑧 × 𝑬 

1 − 𝜔𝑐𝜍
2 𝜔2 

 

𝜍=𝑖,𝑒

 

=  
𝑆 −𝑖𝐷 0
𝑖𝐷 𝑆 0
0 0 𝑃

 . 𝑬  . 

(6) 

  

And the elements of dielectric tensor are: 

 

𝑆 = 1 −  
𝜔𝑝𝜍

2

𝜔2 − 𝜔𝑐𝜍
2

𝜍=𝑖,𝑒

, 𝐷 =  
𝜔𝑐𝜍

𝜔

𝜔𝑝𝜍
2

𝜔2 −𝜔𝑐𝜍
2

𝜍=𝑖,𝑒

, 𝑃 = 1 −  
𝜔𝑝𝜍

2

𝜔2

𝜍=𝑖,𝑒

  . (7) 

  

The terms S and D can be decomposed into a sum and a difference using the relations: 

 



 

22nd International Geophysical Conference and Exhibition, Queensland • Australia 

February 26 - 29, 2012 

 

6 

𝑆 =
𝑅 + 𝐿

2
, 𝐷 =

𝑅 − 𝐿

2
  . (8) 

 

where R and L are defined by  

 

 𝑅 = 1 −  
𝜔𝑝𝜍

2

𝜔 𝜔 + 𝜔𝑐𝜍  
𝜍=𝑖,𝑒

 , 𝐿 = 1 −  
𝜔𝑝𝜍

2

𝜔 𝜔 − 𝜔𝑐𝜍  
𝜍=𝑖,𝑒

   . (9) 

 

So that R diverges when 𝜔 = −𝜔𝑐𝜍  whereas L diverges when 𝜔 = 𝜔𝑐𝜍 . Since 𝜔𝑐𝜍 =
𝑞𝜍𝐵

𝑚𝜍
, the ion cyclotron 

frequency is positive and the electron cyclotron frequency is negative. Hence, R diverges at the electron cyclotron 

frequency, whereas L diverges at the ion cyclotron frequency. When 𝜔 → ∞, both 𝑅, 𝐿 → 1. In the limit 𝜔 → 0, 

evaluation of R, L must be done very carefully, since 

 

𝜔𝑝𝜍
2

𝜔𝑐𝜍

=
𝑛𝜍𝑞𝜍

2

𝜀0𝑚𝜍

𝑚𝜍

𝑞𝜍𝐵
=
𝑛𝜍𝑞𝜍
𝜀0𝐵

 ,  (10) 

   

so that  

 

𝜔𝑝𝑖
2

𝜔𝑐𝑖

= −
𝜔𝑝𝑒

2

𝜔𝑐𝑒

  .  (11) 

  

thus 

 

lim
𝜔→0

𝑅, 𝐿 = 1 −
1

𝜔
 

𝜔𝑝𝑖
2

 𝜔 ± 𝜔𝑐𝑖  
+

𝜔𝑝𝑒
2

 𝜔 ± 𝜔𝑐𝑒  
  

= 1 −
𝜔𝑝𝑖

2 + 𝜔𝑝𝑒
2

𝜔𝑐𝑖𝜔𝑐𝑒

 

≅ 1 −
𝑛𝑒𝑞𝑒

2

𝜀0𝑚𝑒

𝑚𝑖

𝑞𝑖𝐵

𝑚𝑒

𝑞𝑒𝐵
 

= 1 +
𝜔𝑝𝑖

2

𝜔𝑐𝑖
2  

= 1 +
𝑐2

𝑉𝐴
2  .  

(12) 

 

These simplifications imply that to obtain we are concerned with oscillations involving bulk motion of the 

plasma. Then the time scale for fluid motion should be longer than the ion cyclotron gyration's time or equivalently 

𝜔 ≪ 𝜔𝑐𝑖  . Long time scales are required, because for time scales shorter than the ion cyclotron gyration's time, the 

electron and ion behave quite differently and the approximation for single fluid motion is not appropriate. By using 

Eq. (6) and (12) the dielectric tensor has the following form:  
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𝐾 =

 
 
 
 
 
 
 
 1 +

𝑐2

𝑉𝐴
2 0 0

0 1 +
𝑐2

𝑉𝐴
2 0

0 0 1 −  
𝜔𝑝𝜍

2

𝜔2

𝜍=𝑖,𝑒  
 
 
 
 
 
 
 

  . (13) 

     

The relation between the conductivity and the dielectric tensor is 𝐾 = 𝐼 −
𝜍   

𝑖𝜀0𝜔
 . This relation was obtained by 

writing the Ampere's law in microscopic and macroscopic forms. So that the conductivity tensor is: 

 

𝜍 =

 
 
 
 
 
 
 
 𝑖𝜀0𝜔

𝑐2

𝑉𝐴
2 0 0

0 𝑖𝜀0𝜔
𝑐2

𝑉𝐴
2 0

0 0 −𝑖𝜀0𝜔  
𝜔𝑝𝜍

2

𝜔2

𝜍=𝑖,𝑒  
 
 
 
 
 
 
 

 𝑜𝑟 𝜍 =  

𝜍⊥ 0 0
0 𝜍⊥ 0
0 0 𝜍∥

    . (14) 

 

The requirement that 
𝜍∥

𝜍⊥
≫ 1 then becomes 𝜔2 ≪

𝜔𝑝𝜍
2 𝑉𝐴

2

𝑐2  which is consistent with the low frequency assumption 

made. In order to obtain equations for MHD waves, we next consider Maxwell's equations with the expression for 𝐾  

from Eq. (13). Also the field strengths are linearized by setting 𝑩 = 𝑩0 + 𝑩1 , where 𝑩0 is the undisturbed uniform 

magnetic field and setting 𝑬 = 𝑬1. Source terms 𝜌 𝒓, 𝑡  and 𝑱 𝒓, 𝑡 , external to the plasma are assumed. These 

charge and current source are provided by moving conductor. For the present, 𝜌 𝒓, 𝑡  is left completely general; but 

𝑱 𝒓, 𝑡 = 𝑱 𝑥 − 𝑉𝑐𝑡, 𝑡 . That is, the source current is the current through the moving conductor, and thus the current 

must depend on  𝑥 − 𝑉𝑐𝑡 . The dielectric tensor of plasma is represented by:  

 

𝑫 = 𝜀 𝑬 

𝑫 = 𝜀0𝐾 𝑬  . 

𝜀 = 𝜀0𝐾   

(15) 

 

By some simplification the 𝜀⊥ , 𝜀∥ are as below. 

 

𝜀⊥ = 𝜀0  1 +
𝑐2

𝑉𝐴
2  

𝜀∥ = 𝜀0  1 −  
𝜔𝑝𝜍

2

𝜔2

𝜍=𝑖,𝑒

  

(16) 

        

Maxwell's equations then, in Fourier transformed, are the following: 

 

−𝒌 𝒌. 𝑬1 + 𝒌2𝑬1 = 𝑖𝜔𝜇0𝑱 𝒌 𝛿 𝜔 − 𝒌. 𝑽𝑐 + 𝜇0𝜔
2𝜀0𝐾 𝑬1 

𝜀∥𝑘∥𝐸∥ + 𝜀⊥𝒌⊥ . 𝑬⊥ =
𝜌

𝑖
→ 𝜀∥𝑘∥𝐸∥ + 𝜀⊥𝑘⊥𝐸⊥

𝑙 =
𝜌

𝑖
 

(17) 

 

In above equations 𝑬⊥ = 𝑬⊥
𝑙 + 𝑬⊥

𝑡𝑟 , where 𝒌⊥ . 𝑬⊥ = 𝑘⊥𝐸⊥
𝑙  and 𝒌⊥ × 𝑬⊥ = 𝒌⊥ × 𝑬⊥

𝑡𝑟 . By using Eqs. (16) and 

(17) the following equations are obtained:  
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 𝜔2𝜇0𝜀⊥ − 𝑘∥
2 − 𝑘⊥

2
𝜀⊥
𝜀∥
 𝐸⊥

𝑙 =
𝜔𝜇0

𝑖

𝑱 𝒌 . 𝒌⊥
𝑘⊥

𝛿 𝜔 − 𝒌. 𝑽𝑐 −
𝑘⊥𝜌

𝑖𝜀∥
  , (18) 

 

and 

 

 𝜔2𝜇0𝜀⊥ − 𝑘∥
2 − 𝑘⊥

2 𝐸⊥
𝑡𝑟 =

𝜔𝜇0

𝑖

 𝑱 𝒌 × 𝒌⊥ 

𝑘⊥
𝛿 𝜔 − 𝒌. 𝑽𝑐   . (19) 

 

Eq. (18) represents the Alfven wave. For 
𝜀⊥

𝜀∥
≪ 1, the equation reduces to a one dimensional equation for a 

transverse electric field propagating along the 𝑩0 direction with velocity about 𝑉𝐴  and frequency 𝜔 = 𝒌. 𝑽𝑐  . The 

wavelength parallel to 𝑉𝑐  is about L, the length of the conductor along the direction of motion, so that 𝜔 ≅
2𝜋𝑉𝑐

𝐿
 . Eq. 

(19) represents a magnetosonic wave, also with velocity 𝑉𝐴 . But this wave propagates isotropically, and thus the 

energy falls away as 
1

𝑟2. In contrast, the Alfven wave energy is concentrated along one direction. So the Alfven wave 

is more important. 

Now Eq. (18) is transformed back to real space:  

 

 −
1

𝑉𝐴
2

𝜕2

𝜕𝑡2
+

𝜕2

𝜕𝑧2
 ∇⊥ . 𝑬 = 𝜇0

𝜕

𝜕𝑡
∇⊥ . 𝑱 𝑥 − 𝑉𝑐𝑡, 𝑦, 𝑧   . (20) 

 

It follows from this form of the equation that the wave field 𝑬1 is a function of variables 𝑦, 𝑥 − 𝑉𝑐𝑡 ±  
𝑉𝑐

𝑉𝐴
 𝑧 and 

therefore 𝑩 is a function of the same variables. Thus, as stated earlier, the perturbation fields occur in Alfven wings 

which are at an angle 𝛼 = 𝑡𝑎𝑛−1 𝑉𝑐

𝑉𝐴
 to the direction of 𝑩0. Since the tangential component of the electric field 𝑬 is 

continuous across the surface of the conductor, the electric field between the wings has the same magnitude as that 

in the conductor: − 𝑽𝑐 × 𝑩0 . From the Maxwell's perturbed equations is can be determined that the magnitude of 

the perturbation magnetic field is 𝑩1 =  
𝑉𝑐

𝑉𝐴
 

 
𝑀𝐴

𝑩0. Thus, the linear theory is valid when Alfven Mach number 𝑀𝐴 ≪

1. The plasma in the wings will experience an 𝑬 × 𝑩 drift that will approach the velocity of the conductor 𝑉𝑐 . That is 

the reason, the plasma between the wings will move with the conductor. Similar process occurs in the Jovian 

system; due to the Io's motion in the plasma torus of the Jupiter and in the magnetosphere of this giant solar system 

planet the Alfven waves and the corresponding current sheets are produced and phenomena will be used to analyze 

sheet source aligned along the magnetic field lines.       

Now we proceed to find an expression for group velocity direction. The definition of dielectric tensor means that 

Maxwell's equations, the Lorentz equation, and the plasma currents can now be summarized in just two coupled 

equations, namely  

 

∇ × 𝑩 =
1

𝑐2

𝜕

𝜕𝑡
 𝐾 . 𝑬  

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
  . 

(21) 

   

The cold plasma wave equation is obtained by taking the curl of ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 and then substituting for ∇ × 𝑩 

using ∇ × 𝑩 =
1

𝑐2

𝜕

𝜕𝑡
 𝐾 . 𝑬  to obtain:  

 

∇ ×  ∇ × 𝑬 = −
1

𝑐2

𝜕2

𝜕𝑡2
 𝐾 . 𝑬  . (22) 
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Since a phase dependence 𝑒𝑥𝑝 𝑖𝒌. 𝒙 − 𝑖𝜔𝑡  is assumed, this can be written in algebraic form as  

 

𝒌 ×  𝒌 × 𝑬 = −
𝜔2

𝑐2
𝐾 . 𝑬  . (23) 

  

By using 𝒏 =  
𝑐𝒌

𝜔
  Eq. (10) becomes 

 

𝒏𝒏. 𝑬 − 𝑛2𝑬 + 𝐾 . 𝑬 = 0 , (24) 

  

which is essentially a set of three homogenous equations in the three components of 𝑬. The refractive index can 

be decomposed into parallel and perpendicular components relative to the equilibrium magnetic field 𝑩0 = 𝐵0𝑧 . For 

convenience the 𝑥 axis of the coordinate system is defined to lie along the perpendicular component of 𝒏 so that 

𝑛𝑦 = 0 by assumption. This simplification is possible for a spatially uniform equilibrium only; if the plasma is non-

uniform in the 𝑥 − 𝑦 plane, there can be a real distinction between 𝑥 and 𝑦 direction propagation and the refractive 

index in the 𝑦 direction cannot be simply defined away by choice of coordinate system.  

To set the stage for obtaining a dispersion relation, Eq. (11) is written in matrix form as 

 

 
𝑆 − 𝑛𝑧

2 −𝑖𝐷 𝑛𝑥𝑛𝑧
𝑖𝐷 𝑆 − 𝑛2 0
𝑛𝑥𝑛𝑧 0 𝑃 − 𝑛𝑥

2

 .  

𝐸𝑥
𝐸𝑦
𝐸𝑧

 = 0 . (25) 

    

It is useful to introduce a spherical coordinate system in 𝑘 space with 𝑧  defining the axis and 𝜃 the polar angle. 

Thus, the Cartesian components of the refractive index are related to the spherical components by 

 

𝑛𝑥 = 𝑛𝑠𝑖𝑛𝜃, 𝑛𝑧 = 𝑛𝑐𝑜𝑠𝜃, 𝑛2 = 𝑛𝑥
2 + 𝑛𝑦

2    . (26) 

   

And so Eq. (12) becomes 

 

 
𝑆 − 𝑛2𝑐𝑜𝑠2𝜃 −𝑖𝐷 𝑛2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑖𝐷 𝑆 − 𝑛2 0
𝑛2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 0 𝑃 − 𝑛2𝑠𝑖𝑛2𝜃

 .  

𝐸𝑥
𝐸𝑦
𝐸𝑧

 = 0 . (27) 

 

This equation has non-trivial solution if and only if the determinant of the matrix is zero. After some algebra this 

determinant can be written as: 

 

𝐴𝑛4 − 𝐵𝑛2 + 𝐶 = 0 . (28) 

 

where 

 

𝐴 = 𝑆𝑠𝑖𝑛2𝜃 + 𝑃𝑐𝑜𝑠2𝜃 , 

𝐵 =  𝑆2 − 𝐷2 𝑠𝑖𝑛2𝜃 + 𝑃𝑆 1 + 𝑐𝑜𝑠2𝜃  ,  
𝐶 = 𝑃 𝑆2 − 𝐷2 = 𝑃𝑅𝐿   . 

(29) 

 

By sorting out in the dispersion relation, Eq. (28), the following equation is obtained: 
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𝑡𝑎𝑛2𝜃 =
−𝑃 𝑛2 − 𝑅  𝑛2 − 𝐿 

 𝑆𝑛2 − 𝑅𝐿  𝑛2 − 𝑃 
 . (30) 

 

To obtain a relation for the index of refraction of the whistler mode: first, we ignore the ions terms since they 

response much more slowly than the electron in the frequency of interest due to their heavy masses. Second, we 

assume that both the wave frequency and the electron cyclotron frequency are both much less than the electron 

plasma frequency (𝜔2 ≪ 𝜔𝑝
2 , 𝜔𝑐

2 ≪ 𝜔𝑝
2). These conditions are satisfied in our case, because the auroral hiss 

emission region is well below the electron cyclotron frequency (𝑓 < 𝑓𝑐), as shown in Fig. 4, and the plasma 

frequency is about ten times greater than cyclotron frequency (𝑓𝑝 ≈ 590𝐾𝐻𝑧 ≫ 𝑓𝑐 ≈ 58𝐾𝐻𝑧). With this assumption 

and the corrections applied to expressions for R, L, D, S, and P, it is easy to obtain a relation for the index of 

refraction as the following: 

 

𝑛2 =
𝜔𝑝

2

𝜔 𝜔𝑐𝑐𝑜𝑠𝜃 − 𝜔 
 . (31) 

 

Three polar plots of this equation for frequency 𝑓1, 𝑓2, 𝑎𝑛𝑑 𝑓3are shown in Fig. 1. The resonance cone is defined 

as the locus of points where the index of refraction goes to infinity. The corresponding wave normal angle is called 

the resonance cone angle, which in this case is given by 𝑐𝑜𝑠𝜃𝑟𝑒𝑠 =
𝜔

𝜔𝑐
 . Since the group velocity of wave 

propagation is perpendicular to the index of refraction surface, then the angle 𝜓, between the direction of the group 

velocity and the magnetic field is given by 𝜓 = 90𝑜 − 𝜃𝑟𝑒𝑠 . It follows then that the group velocity direction, which 

is the direction of energy flow is given by: 

 

𝑠𝑖𝑛𝜓 =
𝑓

𝑓𝑐
 . (32) 

 

It is obvious that the higher frequencies have larger angles of propagation. Fig. 7 shows a simple point source 

near Io. When an observer approaches the radiation source from left, the highest radiation frequency 𝑓3 is received; 

then the smaller frequencies 𝑓2, and 𝑓1 will be detected respectively. 

 

 
Figure 7. Propagation of 

whistle mode waves from a 

point source. 

 

In order to explain the funnel-shaped cutoff characteristic of the auroral hiss, we consider a simple two 

dimensional model. Two assumptions are made to simplify the model; first that the magnetic field is uniform 

everywhere and is perpendicular to the trajectory of the spacecraft, and the second, that the radiation source is a 

point source. To carry out a simplified analysis, we introduced coordinate 𝑥, which is a perpendicular distance from 

the spacecraft to the magnetic field line through the source and the distance ℎ, which is the height of the spacecraft 

above the source as shown in Fig. 8.  
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Figure 8. The geometry of the produce of a funnel- 

shaped low frequency cutoff. 

 

Then a simple geometry shows: 

 

𝑡𝑎𝑛𝜓 =
𝜒

ℎ
 . (33) 

 

Also for Eq. (32) it is possible to obtain: 

 

𝑡𝑎𝑛𝜓 =
𝑓

 𝑓𝑐
2 − 𝑓2

 . (34) 

 

Equating Eqs. (33) and (34) gives the low frequency cutoff as the following: 

 

𝑓2 = 𝑓𝑐
2 −

ℎ2

𝑥2 + ℎ2
 𝑓𝑐

2. (35) 

 

This equation is a hyperbola with an upper frequency limit 𝑓𝑐 .   

C. Calculation of point source model and the sheet source 

model 

Under the assumptions 𝜔2 ≪ 𝜔𝑝
2 , 𝜔𝑐

2 ≪ 𝜔𝑝
2 we have 𝑠𝑖𝑛𝜓 =

𝑓

𝑓𝑐
 , where 𝜓 is the angle between the limiting ray path direction 

and the magnetic field. Fig. 9 shows the geometric relation to 

locate the point source of emission.  𝑥, 𝑦, 𝑧  is an arbitrary point 

on the trajectory of the Galileo;  𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠  represents the position 

of the emission source;  𝑥0 , 𝑦0 , 𝑧0  is a point when the spacecraft 

is on the magnetic field line through the source; or is a point 

where the lowest frequency of the emission of the cutoff boundary 

is received. The low frequency apex of the emission occurs at 

about 01:20:00 UT (as shown in Fig. 4), which corresponds to 

spacecraft coordinates  𝑥0 , 𝑦0 , 𝑧0 =  −0.893,0.24, −1.019 . All 

of the values is a ration of the Io's radius 𝑅𝐼𝑜 . The height of the 

source ℎ =  𝑹0 − 𝑹𝑠  is adjusted until a best-fit cutoff boundary 

 
Figure 9. The geometric relation for 

locating the point source position when 

using best-fit propagation cutoff. 
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is found. If the height of the emission source ℎ is given, then the coordinates of the source  𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠  can be 

calculated by simple geometry relations: 

 

𝑥0 − 𝑥𝑠
𝐵𝑥

=
𝑦0 − 𝑦𝑠
𝐵𝑦

=
𝑧0 − 𝑧𝑠
𝐵𝑧

=
ℎ

𝐵
 ⟹

 
 
 

 
 𝑥𝑠 = 𝑥0 −

ℎ

𝐵
𝐵𝑥

𝑦𝑠 = 𝑦0 −
ℎ

𝐵
𝐵𝑦

𝑧𝑠 = 𝑧0 −
ℎ

𝐵
𝐵𝑧

   . (36) 

 

The required data for magnetic field obtained from Fig. 5.For each point in the range 01:15:00 UT to 01:20:00 

UT on the trajectory 𝑅 𝑥, 𝑦, 𝑧  the angle 𝜓 between 𝑹 − 𝑹𝑠 and 𝑹0 − 𝑹𝑠 should be calculated by using the 

following relation: 

 

𝑐𝑜𝑠𝜓 =
 𝑹 − 𝑹𝑠 .  𝑹0 − 𝑹𝑠 

 𝑹 − 𝑹𝑠  𝑹0 − 𝑹𝑠 
=

 𝑥 − 𝑥𝑠  𝑥0 − 𝑥𝑠 +  𝑦 − 𝑦𝑠  𝑦0 − 𝑦𝑠 +  𝑧 − 𝑧𝑠  𝑧0 − 𝑧𝑠 

  𝑥 − 𝑥𝑠 
2 +  𝑦 − 𝑦𝑠 

2 +  𝑧 − 𝑧𝑠 
2  𝑥0 − 𝑥𝑠 

2 +  𝑦0 − 𝑦𝑠 
2 +  𝑧0 − 𝑧𝑠 

2
 (37) 

 

Using the above equation we get the time dependent of the cutoff frequency (𝑓 𝑡 = 𝑓𝑐𝑠𝑖𝑛𝜓 = 𝑓𝑐 1 − 𝑐𝑜𝑠2𝜓). 

Fig. 10 shows the results for different value of ℎ. 

 

 
Figure 10. Cutoff Frequencies vs. universal times for different height between the 

Galileo and the point source. 

 

The solid points are sampled from Fig. 4 from the cutoff boundary of the spectrum. The wide range of ℎ 

indicates that the source does not have a sharp defined low altitude boundary. That is reasonable since the emission 

spectrum in Fig. 4 does not have a sharply defined frequency time boundary. The best fit to the cutoff frequency 

data gives ℎ = 0.9, which corresponds to the source position at coordinates  𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 =  −1.0434,0.469, −0.16 . 
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The small value of 𝑧𝑠 indicates that the source lies near the equator of Io; in the region where Jupiter's magnetic field 

is tangent to the surface if Io. The current system between the Jupiter and the Io which is probably the reason of the 

auroral hiss is shown in Fig. 11. The electromotive force which is across the Io's radial diameter drives a current that 

flows on the surface of the magnetic flux tube connecting Io with Jupiter at geographical colatitude for the northern 

foot of 𝜃𝑖 = 24𝑜 . 

 

 
Figure 11. The current circuit of Io and Jupiter and the trajectory of Galileo are shown. 

  

Since the frequency-time spectrum of the radiation is filled in instead of being a sharp line, it is likely that the 

source of the emission is either a line or a sheet source. Applying the unipolar inductor model, we consider the 

possibility that the source is a cylindrical current sheet (Fig. 12 and 13). 

 

 
 

Figure 12. Sheet emission source model. Figure 13. 3-D model of Io's current sheet. 
 

The axis of the cylinder is in the direction of the magnetic field line at 𝑅0 through the center of the Io with radius 

𝑟 =  𝑥𝑠
2 + 𝑦𝑠

2 + 𝑧𝑠
2 = 1.15 > 1. This issue is reasonable since the current sheet is most likely produced in the 

ionosphere of the Io. Because we have no information of the magnetic field out of the trajectory, we simply assume 
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that the local current sources responsible for the radiation are also along 𝐵0 at 𝑅0. Also for simplicity, plane P has 

drawn with its normal along z direction through point 𝑅𝑠. The intersection between the plane P and the cylindrical 

current sheet makes a curve C. For every point on the trajectory, the normal of the current cylinder 𝑅0
′ 𝑅 has drawn. 

Note 𝑅0
′  lies on the surface of the cylinder. Line 𝑅𝑠

′𝑅0
′  is parallel to 𝐵0 and intersects with curve C at point 𝑅𝑠

′ . The 

coordinates of 𝑅0
′ =  𝑥0

′ , 𝑦0
′ , 𝑧0

′   and 𝑅𝑠
′ =  𝑥𝑠

′ , 𝑦𝑠
′ , 𝑧𝑠

′   can be calculated as follows: Define the unit vector of  𝐵0 as 

𝑛𝐵 =  𝑎, 𝑏, 𝑐 =  0.167, −0.255, −0.952 , then the coordinates of point  𝑥1 , 𝑦1 , 𝑧1  satisfy 

 

𝑥1

𝑎
=
𝑦1

𝑏
=
𝑧1

𝑐
= 𝑞1 ⇒  

𝑥1 = 𝑎𝑞1

𝑦1 = 𝑏𝑞1

𝑧1 = 𝑐𝑞1

   , 𝑅1𝑅. 𝑛𝐵 = 0 ⟹  𝑥 − 𝑥1 𝑎 +  𝑦 − 𝑦1 𝑏 +  𝑧 − 𝑧1 𝑐 = 0 . (39) 

 

So we have 𝑞1 =
𝑎𝑥+𝑏𝑦+𝑐𝑧

𝑎2+𝑏2+𝑐2  . Substitute 𝑞1 into (39), we have  𝑥1 , 𝑦1 , 𝑧1 . The equation of line 𝑅1𝑅0
′ 𝑅 is: 

𝑥0
′ − 𝑥1

𝑥 − 𝑥1

=
𝑦0
′ − 𝑦𝑠
𝑦 − 𝑦1

=
𝑧0
′ − 𝑧𝑠
𝑧 − 𝑧1

= 𝑞2 ⟹  

𝑥0
′ =  𝑥 − 𝑥1 𝑞2 + 𝑥1

𝑦0
′ =  𝑦 − 𝑦1 𝑞2 + 𝑦1

𝑧0
′ =  𝑧 − 𝑧1 𝑞2 + 𝑧1

   . (40) 

  

In fact, 𝑞2 =
𝑟

  𝑥−𝑥1 
2+ 𝑦−𝑦1 

2+ 𝑧−𝑧1 
2
 . Substitute 𝑞2 into Eq. (40), we get the coordinate  𝑥0, 𝑦0 , 𝑧0 . To find 

𝑅𝑠
′ =  𝑥𝑠

′ , 𝑦𝑠
′ , 𝑧𝑠

′  , note that 𝑹0
′ − 𝑹𝑠

′  is parallel to 𝐵0 so: 

 

𝑥𝑠
′ − 𝑥0

′

𝑎
=
𝑦𝑠
′ − 𝑦0

′

𝑏
=
𝑧𝑠
′ − 𝑧0

′

𝑐
= 𝑞3 ⟹  

𝑥𝑠
′ = 𝑎𝑞3 + 𝑥0

′

𝑦𝑠
′ = 𝑏𝑞3 + 𝑦0

′

𝑧𝑠
′ = 𝑐𝑞3 + 𝑧0

′

   . (41) 

 

Recall 𝑧𝑠
′ = 𝑧𝑠 ⟹ 𝑞3 =

𝑧𝑠−𝑧0
′

𝑐
 . Substitute 𝑞3 into Eq. (41), we get the coordinate 𝑅𝑠

′ =  𝑥𝑠
′ , 𝑦𝑠

′ , 𝑧𝑠
′  . Now it is 

possible to calculate the angle 𝜓 between 𝑹 − 𝑹𝑠
′  and 𝑹0

′ − 𝑹𝑠
′ .  

 

𝑐𝑜𝑠𝜓 =
 𝑹 − 𝑹𝑠

′  .  𝑹0
′ − 𝑹𝑠

′  

 𝑹 − 𝑹𝑠
′   𝑹0

′ − 𝑹𝑠
′  

=
 𝑥 − 𝑥𝑠

′   𝑥0
′ − 𝑥𝑠

′  +  𝑦 − 𝑦𝑠
′  𝑦0

′ − 𝑦𝑠
′ +  𝑧 − 𝑧𝑠

′   𝑧0
′ − 𝑧𝑠

′  

  𝑥 − 𝑥𝑠
′  2 +  𝑦 − 𝑦𝑠

′ 2 +  𝑧 − 𝑧𝑠
′  2  𝑥0

′ − 𝑥𝑠
′  2 +  𝑦0

′ − 𝑦𝑠
′ 2 +  𝑧0

′ − 𝑧𝑠
′  2

 (42) 

 

Fig. 14 shows the results for a sheet emission source. 

As previous the ray tracing fit to the observed spectrum is 

quite good. This issue indicates that the emission source 

for the auroral-hiss emission could be a sheet source. The 

good fit also indicates that the trajectory of the spacecraft 

is nearly perpendicular to the cylindrical current sheet.    

 

              

 

         

  

 

 

 

 

 

 
 

Figure 14. Cutoff Frequency vs. universal times for 

h=0.9RIO for sheet source model. 
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III. Conclusion 

A series of ray tracing computations have been performed by assuming a point and cylindrical sheet sources. It is 

found that the low-altitude boundary of the current source lies at near the equatorial plane of Io with coordinates 

 −1.0434,0.469, −0.16 , which corresponds to a height of about 270 km from the surface of Io. From the electron 

density profile of the ionosphere of Io, it is possible to see that the current source well lies in the ionosphere of Io 

with a local electron density about 3 × 104 electrons per cubic centimeter.       
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