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Fig. 2 Variation of time delay between the impulsive EUV peak and the soft X-ray peak with
respect to the soft X-ray peak flux. The solid line is a linear fit with correlation coefficient R D
0:62. The time delay is measured as EUV peak–SXR peak. Read 1E-6 as 1 � 10�6
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Major Surge Activity of Super-Active Region
NOAA 10484

W. Uddin, P. Kumar, A.K. Srivastava, and R. Chandra

Abstract We observed two surges in H˛ from the super-active region NOAA
10484. The first surge was associated with an SF/C4.3 class flare. The second one
was a major surge associated with a SF/C3.9 flare. This surge was also observed with
SOHO/EIT in 195 Å and NoRH in 17 GHz, and showed similar evolution in these
wavelengths. The major surge had an ejective funnel-shaped spray structure with
fast expansion in linear (about 1:2 � 105 km) and angular (about 65ı) size during
its maximum phase. The mass motion of the surge was along open magnetic field
lines, with average velocity about 100 km s�1. The de-twisting motion of the surge
reveals relaxation of sheared and twisted magnetic flux. The SOHO/MDI magne-
tograms reveal that the surges occurred at the site of companion sunspots where
positive flux emerged, converged, and canceled against surrounding field of oppo-
site polarity. Our observations support magnetic reconnection models for the surges
and jets.

1 Introduction

During October–November 2003, major solar activity originated from three super-
active regions, namely NOAA AR 10484, 10486, and 10488. On 25 October, we
observed two surges between 01:50 UT and 04:15 UT that originated from NOAA
AR 10484. The first surge was small; the second one was very dynamic and explo-
sive in nature. Using multi-wavelength data we present a morphological study of
these surges in order to understand the physical processes behind their activity.
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2 Observations

H˛ images of these events were obtained at Aryabhatta Research Institute of
Observational Sciences (ARIES), Nainital, India, on 25 October 2003 using the
15-cm f/15 Coudé solar tower telescope equipped with a Bernard Halle H˛ filter, at
intervals of 15–20 s and with a pixel size of 100. We also used data from SOHO/MDI
(cadence 96 min, 1.9800 pixels, Scherrer et al. 1995), SOHO/EIT (cadence 12 min,
2.500 pixels, Delaboudinière et al. 1995), and NoRH (cadence 10 s, 500 pixels, Takano
et al. 1997).

The H˛ observations nicely show the dynamic evolution of the recurrent surge
activities from 01:50 UT to 04:15 UT (Fig. 1). The surge activities occurred at the
following satellite sunspot of the active region. First, a small surge was associ-
ated with a small (SF/C4.3) flare, which started at 01:55 UT, reached maximum
at 01:57 UT, and ended at 01:59 UT. The arrows show flare 1 and surge 1 in the H˛

images. Another subflare (SF/C2.6) then started at 02:59 UT, peaked at 03:00 UT,
and ended at 03:07 UT without surge activity. At 03:32 UT, another eruptive sub-
flare (SF/C3.9) started with the second, major, dynamic, and explosive surge. It
reached maximum at 03:52 UT and continued up to 04:15 UT. The soft X-ray flux
showed two flares during this main surge eruption. The temporal evolution of these
25 October 2003 flares from NOAA AR 10484 is presented in Fig. 2. The surge
evolved with initially small velocity, but in the ascending phase its velocity grew
and it showed funnel-like structures during its maximum phase at 03:59 UT, which

Fig. 1 Sample images of surge evolution in H˛. The field of view is 30000 � 30000
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Fig. 2 GOES time profiles of the 25 October 2003 flares from NOAA AR 10484

Fig. 3 Top: two EIT 195 Å images and two NoRH 17 GHz images showing the surge eruption.
Bottom: SOHO/MDI magnetograms that show flux emergence and cancelation within the box. The
field of view of each frame is 30000 � 30000

indicate spray-type behavior (the arrow indicates this explosive surge 2 in Fig. 1).
The two-ribbon structure at the footpoint of the surge was also seen during the surge
eruption. The H˛ movie shows the change in orientation of the surge (from North-
East to South-West) and also de-twisting motion was observed during its evolution.

The EIT 195 Å observations show similar morphology of the surge as in H˛:
two-ribbon structure and mass motion at 03:48 UT (arrow in Fig. 3). The Nobeyama
17 GHz images also show the orientation change of the surge material as being
similar to that in the H˛ images at 03:40 UT (Fig. 3).
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The MDI observations show positive flux emergence before the 5–6 h of surge
activity nearby the satellite sunspot (marked by the box in Fig. 3). This flux emerged
before the surge activity and disappeared after the event.

3 Results and Discussion

From our detailed investigation it is evident that the surges were associated with
many C-class subflares, which indicates magnetic field annihilation at the site of
surge activity. The MDI magnetograms reveal positive flux emergence and its cance-
lation by surrounding opposite polarity fields. The major surge rose upwards with an
average velocity of about 100 km s�1; its orientation change and de-twisting motion
demonstrated relaxation of sheared and twisted magnetic field. The funnel-shaped
structure of the surge is due to the material that follows the open magnetic field
lines at the site (visible in the EIT images). The surge shows similar evolution in
H˛ (chromospheric temperature), EIT 195 Å (coronal temperature), and Nobeyama
radio observations at 17 GHz (nonthermal coronal emission).

These multi-wavelength data indicate that the first reconnection took place be-
tween the newly emerged positive polarity sunspot and the pre-existing surrounding
field. Subflaring then occurred, plasma was heated up to 10 MK, and transported to-
wards open and closed field lines, which led to the formation of the two small flare
loops visible in H˛ and EIT, and the funnel-shaped surge structures. This scenario
was earlier reported by Yokoyama and Shibata (1995) on the basis of numerical
simulations. The flaring loops that formed nearby the footpoint of the surge and
the type-III radio burst that was observed during this event are evidence favoring
the magnetic-reconnection surge model (Shibata et al. 1994, Schmieder et al. 1995,
Canfield et al. 1996). Our observational results support this model of magnetic re-
connection for surges. These are only the preliminary results; we are planning to
carry out more detailed study of these observations.

Acknowledgment We thank the conference organizers for a very good meeting and the editors
for excellent instructions. R.C. thanks the CIFIPRA for his postdoc grant.
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Coronal Magnetic Field Estimation Using
Type-II Radio Bursts

K.R. Subramanian, E. Ebenezer, and K.H. Raveesha

Abstract Coronal magnetic fields at two different heights were estimated using
multiple type-II radio bursts observed on 23 January 2003. The strength of the mag-
netic field was estimated using 1–5 times the Newkirk density value. With these
densities the magnetic field varied from 1.47 to 2.16 Gauss for the first type-II burst,
and from 1.13 to 1.76 Gauss for the second one. Its strength was found to have
power-law variation with height, with the index varying from �3 to �2 for densities
1–5 times Newkirk’s value.

1 Observations, Analysis, Results

Meter-wavelength type-II radio bursts can be used to derive the strength of the coro-
nal magnetic field by relating the speed of type-II radio bursts with the Alfvén ve-
locity. In the so-called multiple type-II bursts, two type-II bursts occur in sequence,
the second at lower frequency than the first (Subramanian and Ebenezer 2006).

Type-II emission originates in the vicinity of the transition region of shock waves.
For fundamental/harmonic radiation, the properties of the shock across the shock
front (up/down stream) are related (Vrsnak et al. 2004), with the density jump re-
lated to the instantaneous bandwidth and to the Alfvénic Mach number. The radial
velocity can be derived from the drift rate in a type-II burst assuming a density
model and radial propagation. The relative bandwidth and Alfvénic Mach number
are related as

4f =f D .fu � fl/=fl D
p

.N2=N1 � 1; (1)

N2=N1 D 4M 2
A=.3 C M 2

A/; (2)
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where MA D Vr=VA is the Alfvénic Mach number, with Vr the radial velocity of the
type-II burst and VA the Alfvén speed.

Our solar type-II burst data of 23 January 2003 were used to estimate the strength
of the magnetic field in the solar corona at two different heights. Figure 1 shows the
dynamic spectrum. The first burst started at 04:32 UT around 130 MHz, the second
at 05:59 UT around 100 MHz, and so at lower frequency. The relative bandwidths
were 0:29 ˙ 0:03 and 0:39 ˙ 0:04. The corresponding Alfvénic Mach numbers are
1.46 and 1.67. The drift rate was 0.10 MHz s�1 for the first burst and 0.07 MHz s�1

for the second. We used Newkirk’s density model Ne D M � 4:2 � 104 � 104:32=�,
with � measured in solar radii, for the calculation of the burst speed assuming den-
sity enhancement factor M D 1 � 5. The mean frequencies of the two bursts were
102 and 74 MHz. Magnetic field strengths were estimated from the relation

VA D 1:9 � 104 � B=f; (3)

with B the field strength and f the mean frequency (Dulk and McLean 1978). The
variation of the magnetic field with height is shown in Fig. 2. It can be written as a
power law of the form B.R/ D ˛R� , with the index � varying between �3 and �2

for density enhancement factors M D 1 � 5.

Fig. 1 Example of a multiple type-II radio burst observed with the Gauribidanur digital solar radio
spectrograph. Two type-II bursts are seen in sequence: the first one starting at 04:32 UT, the second
one at 04:49 UT. Both show fundamental/harmonic structures
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Acceleration of CMEs Associated
with Eruptive Prominences

A.D. Joshi and N. Srivastava

Abstract The association of coronal mass ejections (CMEs) with erupting
prominences has been known for a long time. However, most studies focus on
CMEs that cannot be observed close to the solar surface. We present a study of
two CMEs that were associated with eruptive prominences, using data from the
STEREO and SOHO space missions to study the CME accelerations. Our results
confirm the scaling law proposed by Chen and Krall (2003).

1 Introduction

It has been well established (Webb et al. 1976; Munro et al. 1979; Gopalswamy
et al. 2003; etc.) that eruptive prominences have large correlation with CMEs. It
has also been reported (Zhang and Dere 2006, Zhang et al. 2004) that CMEs show
rapid acceleration between 2 and 3 Rˇ, measured from the Sun’s center. However,
the factors that determine this height are not yet well understood.

In this paper, we examine CME acceleration for two CMEs that occurred on 9
April 2008 and 19 May 2007, respectively, and were observed with the coronagraphs
onboard SOHO as well as the STEREO A and B spacecrafts.

2 Observations

The CME on 9 April 2008 first appeared in the STEREO A COR1 field of view
(FOV) at 10:05 UT. It showed a classical three-part structure, and was seen near
the south-west limb of the Sun. Data from STEREO A and B (COR1, COR2 and
EUVI 304) as well as SOHO (LASCO C2, C3, and EIT 304) were used to obtain the
projected height–time profiles. As the leading edge of this CME was visible only in
the first few frames, a distinguishable feature in the bright central core of this CME

A.D. Joshi (�) and N. Srivastava
Udaipur Solar Observatory, Udaipur, India

S.S. Hasan and R.J. Rutten (eds.), Magnetic Coupling between the Interior
and Atmosphere of the Sun, Astrophysics and Space Science Proceedings,
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Fig. 1 Upper images: simultaneous frames of the CME event of 19 May 2007 from COR1 B and
COR1 A. Lower images: simultaneous frames of the CME event of 9 April 2008 from COR1 B,
LASCO C2, and COR1 A

was tracked in all the frames. This CME had a prominence very close to the solar
limb associated with it.

The 19 May 2007 CME was a relatively faint CME seen close to the north-west
limb. It first appeared in the STEREO A COR1 FOV at 13:25 UT. Its projected
height was determined using the coronagraph images from SOHO and STEREO.
This CME did not display a full three-part structure. The speed and acceleration
of a sterak-like feature were estimated from polynomial fitting of its height–time
curves.

Figure 2 shows the projected height, speed, and acceleration for the event on 19
May 2007. EUVI 304 images were used to measure the separation between the two
footpoints of the prominences preceding the two CMEs.

3 Discussion and Summary

Based on a statistical study, Zhang and Dere (2006) reported that most CMEs exhibit
bimodal acceleration profiles: a main acceleration phase occurring close to the Sun’s
surface and a residual acceleration phase occurring at a greater height. The profiles
for the two events studied here show similar behavior. We also find that for the 19
May 2007 event, maximum acceleration in the main phase was greater than that
for the 9 April 2008 event by almost an order of magnitude. The maximum heights
and accelerations attained by the CMEs are given in Table 1, while Table 2 gives
the speeds, measured in the plane of sky, of the CME leading edges and the central
bright knots that correspond to the erupting prominences.
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Fig. 2 Projected height, speed, and acceleration of the 19 May 2007 and 9 April 2008 CMEs as
seen from STEREO B and STEREO A. COR1 data are denoted by plus signs and COR2 data by
diamonds

Table 1 The average vavg and maximum vmax speed and the maximum acceleration amax recorded
by each instrument is given along with the projected height and time corresponding to the instant
at which amax was achieved by the two CMEs

vavg vmax amax Height Time
CME Coronagraphs (km s�1) (km s�1) (m s�2) (R

ˇ

) (UT)

2007 COR1 and COR2 A 273 346 429 1.70 13:25
May 19 COR1 and COR2 B 372 476 457 1.68 13:21

LASCO C2 and C3 363 423 285 2.41 14:00
2008 COR1 and COR2 A 454 551 66 1.56 10:15
Apr 09 COR1 and COR2 B 385 444 113 1.55 10:25

LASCO C2 and C3 388 548 131 2.60 11:06

Chen and Krall (2003) have proposed a scaling law for those CMEs that are as-
sociated with eruptive prominences. It states that the height at which CMEs attain
maximum acceleration is greater than half the separation of footpoints of the asso-
ciated prominence. The footpoint separation for the two filaments was found to be
about 0.21 Rˇ, measured from the EUVI 304 images. The footpoint separations of
the associated prominences compared with the height amax are given in Table 1 and
show that this scaling applied.

The acceleration of both CMEs occurred in two phases: the main phase and the
residual phase (Fig. 2 and Table 1). This is in accordance with Zhang and Dere
(2006), who found average accelerations of 331 and 0.9 m s�2 for the main and
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Table 2 Plane-of-sky speeds in units of km s�1 for the leading edge (LE) and the associated
prominences (Prom.) for 19 May 2007 and 9 April 2008 as measured from COR1 and COR2
images

19 May 2007 09 Apr 2008
COR1 COR2 COR1 COR2
Prom. LE Prom. LE Prom. LE Prom. LE

STEREO A 250 222 195 318 237 315 450 491
STEREO B 289 255 259 357 219 246 381 441

residual phase, respectively. Our study also agrees with Joshi and Srivastava (2007)
who found for all but one event that prominences with footpoint separation greater
than 0.20 Rˇ have a CME associated with them.

4 Future Plan

Presently, we are engaged in obtaining the three-dimensional reconstructed heights
of the 9 April 2008 CME, from which we will be able to determine the true CME
velocity. In addition, we will carry out a similar reconstruction for EUVI 304 images
of the filament on 19 May 2007, which happens to be close to disk center, in order to
study filament motion in the early stages of eruption. We will also look for signatures
of filament material from this event in interplanetary space using in situ data from
various spacecrafts.

Acknowledgment The authors thank the SOHO/EIT and LASCO consortia for providing the data
used in this analysis. We also acknowledge the STEREO/SECCHI consortium for providing the
data.
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Interplanetary Consequences of a Large CME

M. Lahkar, P.K. Manoharan, K. Mahalakshmi, K. Prabhu, G. Agalya,
S. Shaheda Begum, and P. Revathi

Abstract We analyze a coronal mass ejection (CME) that resulted from an intense
flare in active region AR486 on 4 November 2003. The CME propagation and speed
are studied with interplanetary scintillation images, near-Earth space mission data,
and Ulysses measurements. Together, these diverse diagnostics suggest that the in-
ternal magnetic energy of the CME determines its interplanetary consequences.

1 Introduction: Intense Flare and CME

An intense flare and associated coronal mass ejection (CME) occurred on 4 Novem-
ber 2003, during 19:50–20:10UT in active region AR486. The onset of the halo
CME was observed in the SOHO/LASCO C2 field of view (Brueckner et al. 1995)
at 19:54 UT. The CME propagated rather fast in the C2–C3 field of view, at about
2650 km s�1 linear speed (Fig. 1), and caught up with a preceding CME that orig-
inated at the same location at 12:54 UT but had much lower linear speed (about
600 km s�1) and narrow sky-plane width (about 70ı). The LASCO images show
interaction of the two CMEs at about 25 Rˇ. It caused remarkably complex and
intense radio emission (e.g., Gopalswamy et al. 2001).

2 Radio Spectra, Particle Fluxes, and Scintillation Images

Prior to the CME–CME interaction, intense type-III bursts were observed with space
missions Wind, Cassini (Kliore et al. 2004), and Ulysses. In the WAVES spectrum
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Fig. 1 LASCO images showing CME–CME interaction

(Bougeret et al. 1995), a fast-drifting intense type-II burst was observed during
19:50–21:00 UT at frequencies 1–11 MHz. It arrived at 1 MHz around 20:45 UT
corresponding to R D 10–15 Rˇ, in good agreement with the LASCO data.

The WAVES spectrum shows emission from the CME–CME interaction in the
frequency range 1–3 MHz, higher than the type-II frequency at that time. Thus, this
emission relates to about 15 times higher density than the typical ambient density at
the interaction height (e.g., Gopalswamy et al. 2001). In the Cassini spectrum, an in-
tense patch of emission occurred at frequencies below 1 MHz as the extension of the
complex emission seen in WAVES. Thus, the interaction led to electron acceleration
through the intense magnetic field and reconnection resulting from the interaction.
The interaction and associated phenomena were observed more than 30 min on the
above radio spectra (Fig. 2).

Type-IV emission was observed at frequencies >7 MHz during 20:10–21:00UT
(WAVES spectrum in Fig. 2), suggesting a plasmoid associated with the fast-moving
CME (e.g., Manoharan and Kundu 2003). However, it disappeared just before the
interaction.

The particle flux in the energy range 1–100 MeV showed no enhancement dur-
ing the flare, but around 21:30 UT it increased in all energy bands to peak at about
06:00 UT the next day. Figure 3 shows that the increase was about 50 times above
the pre-flare value at energies above 5 MeV. The sudden increase suggests that
the CME–CME interaction favored development of magnetic connectivity with the
Earth and particle acceleration (e.g., Gargate et al. 2006). The CME-produced shock
arrived on 6 November, 19:20 UT (1-MeV profile in Fig. 3).

Figure 4 shows 3D tomographic interplanetary scintillation (IPS) images of the
CME obtained with the Ooty Radio Telescope (e.g., Manoharan et al. 2001). They
cover a range of 50–250 Rˇ. The interacting CMEs compressed the high-density
and low-speed solar wind originating above a current sheet along the North-South
direction. The IPS images obtained during 6 November 18:00–24:00 UT show the
pushing and opening of the current sheet as viewed from the Earth. The central part
of the CME compressed the fast solar wind belonging to a large coronal hole, which
deflected the CME further away from the Sun–Earth line.

The solar wind parameters observed by near-Earth and with the Ulysses space
missions are shown in Fig. 5. The shock arrival times are shown by vertical lines.
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Fig. 4 Ooty IPS images showing the current sheet location (top left), CME deflection by the
coronal hole (top right), CME compression of the solar wind (bottom left), and CME propagation
(bottom right). The Sun is located at the center of each image. The two images at top right represent
solar-wind speed; the others represent density
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As Ulysses was favorably located in the CME propagation direction, it could record
the nose part of the CME and its shock, as indicated by a speed value of over
900 km s�1 at 5 AU. At Earth, the shock speed was below 600 km s�1, suggest-
ing that the eastern tail swept the Earth. From these measurements we infer a speed
profile V � R�0:4 to Earth. However, the deceleration V � R�0:2 out to 5 AU
near Ulysses implies gradual decline in speed along the CME propagation direc-
tion, which is in good agreement with the IPS measurements.
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3 Conclusion

Our study shows the characteristics of a fast-moving CME and its interactions with
transient and solar-wind structures at different distances from the Sun with good
consistency between diverse diagnostics. The enhancement in radio emission and
production of high-energy particles suggest that the magnetic field associated with
the CME was strong. The gradual decline in CME speed suggests that the inter-
nal magnetic energy of the CME supported its propagation, including expansion
in overcoming the aerodynamical drag imposed by the ambient solar wind (e.g.,
Manoharan 2006).
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Solar System Resonances on Light-Travel Time
Scales Set Up before Proto-Sun’s Nuclear
Ignition

M.H. Gokhale

Abstract A scenario is presented showing how solar-system resonances on time
scales of light travel could have got set up before the onset of nuclear reactions in
the proto-Sun. Such resonances may expedite the onset of nuclear ignition in the
proto-Sun and the redistribution and loss of the proto-Sun’s angular momentum.

1 Introduction

To ensure compatibility between models of solar variability phenomena and the
standard model (SSM) of the Sun’s mean structure and evolution, one must construct
a hydrodynamic solar model (HDSM) whose mean structure equals the SSM and
whose hydrodynamic state keeps producing acoustic waves and toroidal magnetic
fields whose dissipation produces solar-like variability phenomena. The differential
rotation that is needed to produce toroidal magnetic fields may be maintained by
deposition of angular momentum by g-mode waves at loci of absorption. The main-
tenance of these waves (and of acoustic waves) needs maintenance of a spectrum
of normal-mode oscillations of the HDSM’s mass elements (i.e., oscillations with
frequencies of the normal modes of the SSM).

I suggest that the power-input needed to maintain this spectrum may originate
from gravitational energy–momentum exchanges of the HDSM’s mass elements
with the planets through resonances on time scales of planet-to-Sun speed-of-light
travel time (e.g., about 43 min between the Sun and Jupiter). This suggestion is
based on the facts that the frequencies of many solar acoustic modes lie in the 1=TP

range for the inner planets, where TP is the light-travel time per planet, and that
the frequencies of many solar g-modes lie in the 360–410 �Hz range perpetually
traversed up and down by 1=TJ as Jupiter moves in its elliptic orbit. This sugges-
tion leads to the question how such resonances get set up initially. In this paper, I
propose a mechanism setting up such resonances in the proto-solar system which
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may also expedite the onset of nuclear ignition near the proto-Sun’s center as well
as redistribution and loss of the proto-Sun’s angular momentum.

2 Fourier Frequencies in Momentum Transfer

Resonances on time scales of solar-system light travel are possible under the
working hypothesis that the energy–momentum exchanges between the solar mass
elements and the planets can be represented by waves with periodicities equal to the
respective light-travel times and with amplitudes consistent with PPN expressions
for the accelerations used in the standard ephemeris.

The standard theory of the origin of the solar system (cf. Shu et al. 1993; Boss
1998) says that the latter was formed by the break-up of a circum-solar parent disk
into the proto-Sun and proto-planetary rings. Consider the turbulent gravitational
dynamics of the parent-disk’s earlier evolution that led to this break-up. Let �Pk ,
with k D 1; 2; : : :, represent the disk mass elements that contributed to mass element
�P of ring P , and let �mi represent a mass element of the proto-Sun. Throughout
the evolution, small changes in the energy and momentum of �Pk at each instant of
time t and the associated changes in the energy and momentum of �mi must both
be spread over an interval of length T D r.�Pk; �mi ; t/=c around t , with c the
velocity of light.

Let f .�P ! �mi ; t/ represent the rate at which �mi receives gravitational
momentum from any �Pk during the interval .t � T=2; t C T=2/. Along with each
r.�Pk; �mi ; t/, the interval-length T .�Pk; �mi ; t/ and the light travel time pro-
file (LTTP) of the rate f during this interval evolve both on longer time scales.
Turbulence in the parent disk couples such LTTPs mutually during their evolution,
so that the LTTP of every f during a given light-travel interval will contain ups
and downs covering a wide range of frequencies, including 1=T .�Pk; �mi ; t/ and
depending on the locations of �P1; �P2; : : : relative to �mi . While different mass
elements merge to form mass element �P in ring P and while all �mi converge
to form the proto-Sun, the wide range of the Fourier frequencies of the LTTP of
each f shrinks towards �p D c=RP , where RP is the average radius of the result-
ing ring P . Ultimately, the Fourier frequencies of the LTTP of each particular rate
f .�P ! �mi ; t/ of momentum supply will lie in a band of small width, say ��P ,
around each respective �P D c=RP . This width will depend on the initial locations
of the mass elements but will be much less than �P as the thickness of the resulting
ring is much less than RP .

Each term in the Fourier expansion of the resulting LTTP of each f over each
light-travel interval T will be as if provided by a momentum wave of period T

propagating from �P to �mi . Thus, the energy–momentum exchanges between
the Sun’s mass elements and the planetary rings under the resonances on time scales
of light-travel.























































































538 Author Index

Shiota, D., 277
Simoniello, R., 368
Singh, K. A. P., 521
Singh, Y. P,., 533
Sivaraman, H., 357
Sivaraman, K. R., 357, 386
Sivaraman, M., 429
Snik, F., 515
Sobotka, M., 410, 507
Sonnett, S. M., 318
Sreejith, P., 413
Sridharan, R., 531
Srivastava, A. K., 437, 478, 525
Srivastava, N., 308, 485
Steiner, O., 166
Stenflo, J. O., 101
Subramanian, K. R., 482, 529
Svanda, M., 410
Svensson, J., 531

Taroyan, Y., 287
Thampi, R. S., 531
Thomas, J. H., 229
Tiwari, S. K., 443
Tripathy, S. C., 374

Tritschler, A., 413, 513
Trujillo Bueno, J., 118, 255
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